939 resultados para Prestressed concrete.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to analyze the applicability of current models used for estimating the mechanical properties of conventional concrete to self-consolidating concrete (SCC). The mechanical properties evaluated are modulus of elasticity, tensile strength,and modulus of rupture. As part of the study, it was necessary to build an extensive database that included the proportions and mechanical properties of 627 mixtures from 138 different references. The same models that are currently used for calculating the mechanical properties of conventional concrete were applied to SCC to evaluate their applicability to this type of concrete. The models considered are the ACI 318, ACI 363R, and EC2. These are the most commonly used models worldwide. In the first part of the study, the overall behavior and adaptability of the different models to SCC is evaluated. The specific characterization parameters for each concrete mixture are used to calculate the various mechanical properties applying the different estimation models. The second part of the analysis consists of comparing the experimental results of all the mixtures included in the database with the estimated results to evaluate the applicability of these models to SCC. Various statistical procedures, such as regression analysis and residual analysis, are used to compare the predicted and measured properties. It terms of general applicability, the evaluated models are suitable for estimating the modulus of elasticity, tensile strength, and modulus of rupture of SCC. These models have a rather low sensitivity, however, and adjust well only to mean values. This is because the models use the compressive strength as the main variable to characterize the concrete and do not consider other variables that affect these properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo principal de este trabajo de investigación es estudiar las propiedades del árido reciclado mixto para la fabricación de hormigón reciclado en aplicaciones no estructurales. Se ha realizado la caracterización completa de 35 muestras de áridos reciclados mixtos gruesos de distinta calidad, procedentes de 13 plantas de tratamiento diferentes de la geografía española. Se han estudiado las correlaciones que existen entre las diferentes propiedades, en particular, con la absorción de agua, el contenido de sulfatos y la composición. Se propone una clasificación de los áridos reciclados y se limita de forma indicativa el contenido de yeso para que una muestra de árido reciclado mixto cumpla con la limitación del 0,8% de los sulfatos solubles en ácido de la Instrucción EHE-08. Recycling of construction and demolition waste (CDW) has become a widespread concern in Spain for the last years, as a way to preserve natural resources and achieve a better control of waste disposal sites.Specific applications which make use of mixed recycled aggregates are of great importance, as this types of aggregates constitute the majority of the total production. Structural and non-structural concrete is one of the possible applications, being this the main goal of our study. This paper presents a study on the physical and chemical characteristics of mixed recycled aggregates which have been obtained from different CDW treatment plants of Spain. Correlations between the different properties were investigated in order to find criterions of acceptance for recycled aggregates to be used in concrete. The comparison between the properties offers the possibility of pre-selecting a great quantity of mixed recycled aggregates, these being suitable for either structural and non-structural concrete. The determination of water absorption and the gypsum content are good indicators in order to evaluate the quality of the mixed recycled aggregates for its application in the production of concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current trends in the fields of artifical intelligence and expert systems are moving towards the exciting possibility of reproducing and simulating human expertise and expert behaviour into a knowledge base, coupled with an appropriate, partially ‘intelligent’, computer code. This paper deals with the quality level prediction in concrete structures using the helpful assistance of an expert system, QL-CONST1, which is able to reason about this specific field of structural engineering. Evidence, hypotheses and factors related to this human knowledge field have been codified into a knowledge base. This knowledge base has been prepared in terms of probabilities of the presence of either hypotheses or evidence and the conditional presence of both. Human experts in the fields of structural engineering and the safety of structures gave their invaluable knowledge and assistance to the construction of the knowledge base. Some illustrative examples for, the validation of the expert system behaviour are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the use of ultrasonic imaging as an evaluation tool in concrete subjected to freeze–thaw (F–T) cycles. To evaluate the damage in this deterioration process, ultrasonic velocity and attenuation images have been generated from concrete specimens with and without air-entraining agents. Two parameters have been proposed from these ultrasonic images according to our experimental setup: the non-assessable area proportion (NAAP) and a weighted average velocity in terms of the NAAP. The proposed parameters have been compared with the recommended failure criteria of the ASTM and Rilem standards, which employ ultrasonic contact measurements. The principal advantage of the use of ultrasonic images and the proposed methodology in comparison with the ultrasonic velocity measurements by contact is the possibility of detection of incipient damage caused by accelerated freeze–thaw cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El hormigón es uno de los materiales de construcción más empleados en la actualidad debido a sus buenas prestaciones mecánicas, moldeabilidad y economía de obtención, entre otras ventajas. Es bien sabido que tiene una buena resistencia a compresión y una baja resistencia a tracción, por lo que se arma con barras de acero para formar el hormigón armado, material que se ha convertido por méritos propios en la solución constructiva más importante de nuestra época. A pesar de ser un material profusamente utilizado, hay aspectos del comportamiento del hormigón que todavía no son completamente conocidos, como es el caso de su respuesta ante los efectos de una explosión. Este es un campo de especial relevancia, debido a que los eventos, tanto intencionados como accidentales, en los que una estructura se ve sometida a una explosión son, por desgracia, relativamente frecuentes. La solicitación de una estructura ante una explosión se produce por el impacto sobre la misma de la onda de presión generada en la detonación. La aplicación de esta carga sobre la estructura es muy rápida y de muy corta duración. Este tipo de acciones se denominan cargas impulsivas, y pueden ser hasta cuatro órdenes de magnitud más rápidas que las cargas dinámicas impuestas por un terremoto. En consecuencia, no es de extrañar que sus efectos sobre las estructuras y sus materiales sean muy distintos que las que producen las cargas habitualmente consideradas en ingeniería. En la presente tesis doctoral se profundiza en el conocimiento del comportamiento material del hormigón sometido a explosiones. Para ello, es crucial contar con resultados experimentales de estructuras de hormigón sometidas a explosiones. Este tipo de resultados es difícil de encontrar en la literatura científica, ya que estos ensayos han sido tradicionalmente llevados a cabo en el ámbito militar y los resultados obtenidos no son de dominio público. Por otra parte, en las campañas experimentales con explosiones llevadas a cabo por instituciones civiles el elevado coste de acceso a explosivos y a campos de prueba adecuados no permite la realización de ensayos con un elevado número de muestras. Por este motivo, la dispersión experimental no es habitualmente controlada. Sin embargo, en elementos de hormigón armado sometidos a explosiones, la dispersión experimental es muy acusada, en primer lugar, por la propia heterogeneidad del hormigón, y en segundo, por la dificultad inherente a la realización de ensayos con explosiones, por motivos tales como dificultades en las condiciones de contorno, variabilidad del explosivo, o incluso cambios en las condiciones atmosféricas. Para paliar estos inconvenientes, en esta tesis doctoral se ha diseñado un novedoso dispositivo que permite ensayar hasta cuatro losas de hormigón bajo la misma detonación, lo que además de proporcionar un número de muestras estadísticamente representativo, supone un importante ahorro de costes. Con este dispositivo se han ensayado 28 losas de hormigón, tanto armadas como en masa, de dos dosificaciones distintas. Pero además de contar con datos experimentales, también es importante disponer de herramientas de cálculo para el análisis y diseño de estructuras sometidas a explosiones. Aunque existen diversos métodos analíticos, hoy por hoy las técnicas de simulación numérica suponen la alternativa más avanzada y versátil para el cálculo de elementos estructurales sometidos a cargas impulsivas. Sin embargo, para obtener resultados fiables es crucial contar con modelos constitutivos de material que tengan en cuenta los parámetros que gobiernan el comportamiento para el caso de carga en estudio. En este sentido, cabe destacar que la mayoría de los modelos constitutivos desarrollados para el hormigón a altas velocidades de deformación proceden del ámbito balístico, donde dominan las grandes tensiones de compresión en el entorno local de la zona afectada por el impacto. En el caso de los elementos de hormigón sometidos a explosiones, las tensiones de compresión son mucho más moderadas, siendo las tensiones de tracción generalmente las causantes de la rotura del material. En esta tesis doctoral se analiza la validez de algunos de los modelos disponibles, confirmando que los parámetros que gobiernan el fallo de las losas de hormigón armado ante explosiones son la resistencia a tracción y su ablandamiento tras rotura. En base a los resultados anteriores se ha desarrollado un modelo constitutivo para el hormigón ante altas velocidades de deformación, que sólo tiene en cuenta la rotura por tracción. Este modelo parte del de fisura cohesiva embebida con discontinuidad fuerte, desarrollado por Planas y Sancho, que ha demostrado su capacidad en la predicción de la rotura a tracción de elementos de hormigón en masa. El modelo ha sido modificado para su implementación en el programa comercial de integración explícita LS-DYNA, utilizando elementos finitos hexaédricos e incorporando la dependencia de la velocidad de deformación para permitir su utilización en el ámbito dinámico. El modelo es estrictamente local y no requiere de remallado ni conocer previamente la trayectoria de la fisura. Este modelo constitutivo ha sido utilizado para simular dos campañas experimentales, probando la hipótesis de que el fallo de elementos de hormigón ante explosiones está gobernado por el comportamiento a tracción, siendo de especial relevancia el ablandamiento del hormigón. Concrete is nowadays one of the most widely used building materials because of its good mechanical properties, moldability and production economy, among other advantages. As it is known, it has high compressive and low tensile strengths and for this reason it is reinforced with steel bars to form reinforced concrete, a material that has become the most important constructive solution of our time. Despite being such a widely used material, there are some aspects of concrete performance that are not yet fully understood, as it is the case of its response to the effects of an explosion. This is a topic of particular relevance because the events, both intentional and accidental, in which a structure is subjected to an explosion are, unfortunately, relatively common. The loading of a structure due to an explosive event occurs due to the impact of the pressure shock wave generated in the detonation. The application of this load on the structure is very fast and of very short duration. Such actions are called impulsive loads, and can be up to four orders of magnitude faster than the dynamic loads imposed by an earthquake. Consequently, it is not surprising that their effects on structures and materials are very different than those that cause the loads usually considered in engineering. This thesis broadens the knowledge about the material behavior of concrete subjected to explosions. To that end, it is crucial to have experimental results of concrete structures subjected to explosions. These types of results are difficult to find in the scientific literature, as these tests have traditionally been carried out by armies of different countries and the results obtained are classified. Moreover, in experimental campaigns with explosives conducted by civil institutions the high cost of accessing explosives and the lack of proper test fields does not allow for the testing of a large number of samples. For this reason, the experimental scatter is usually not controlled. However, in reinforced concrete elements subjected to explosions the experimental dispersion is very pronounced. First, due to the heterogeneity of concrete, and secondly, because of the difficulty inherent to testing with explosions, for reasons such as difficulties in the boundary conditions, variability of the explosive, or even atmospheric changes. To overcome these drawbacks, in this thesis we have designed a novel device that allows for testing up to four concrete slabs under the same detonation, which apart from providing a statistically representative number of samples, represents a significant saving in costs. A number of 28 slabs were tested using this device. The slabs were both reinforced and plain concrete, and two different concrete mixes were used. Besides having experimental data, it is also important to have computational tools for the analysis and design of structures subjected to explosions. Despite the existence of several analytical methods, numerical simulation techniques nowadays represent the most advanced and versatile alternative for the assessment of structural elements subjected to impulsive loading. However, to obtain reliable results it is crucial to have material constitutive models that take into account the parameters that govern the behavior for the load case under study. In this regard it is noteworthy that most of the developed constitutive models for concrete at high strain rates arise from the ballistic field, dominated by large compressive stresses in the local environment of the area affected by the impact. In the case of concrete elements subjected to an explosion, the compressive stresses are much more moderate, while tensile stresses usually cause material failure. This thesis discusses the validity of some of the available models, confirming that the parameters governing the failure of reinforced concrete slabs subjected to blast are the tensile strength and softening behaviour after failure. Based on these results we have developed a constitutive model for concrete at high strain rates, which only takes into account the ultimate tensile strength. This model is based on the embedded Cohesive Crack Model with Strong Discontinuity Approach developed by Planas and Sancho, which has proved its ability in predicting the tensile fracture of plain concrete elements. The model has been modified for its implementation in the commercial explicit integration program LS-DYNA, using hexahedral finite elements and incorporating the dependence of the strain rate, to allow for its use in dynamic domain. The model is strictly local and does not require remeshing nor prior knowledge of the crack path. This constitutive model has been used to simulate two experimental campaigns, confirming the hypothesis that the failure of concrete elements subjected to explosions is governed by their tensile response, being of particular relevance the softening behavior of concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three broken steel bars from a sewed crack in a dam are reported. The inspection of the fracture surfaces of the prestressed bars suggests that fractures were triggered by small cracks and by the inherent brittleness of the bars, as fracture toughness was about 40 MPa m1/2. The analysis of the failures shows that the usual design requirements for prestressing bars fail to warn against brittle failures if some damage exists. Some recommendations, based on the concept of damage tolerance, are suggested to avoid similar unfortunate incidents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures,can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion of a reinforcement bar leads to expansive pressure on the surrounding concrete that provokes internal cracking and, eventually, spalling and delamination. Here, an embedded cohesive crack 2D finite element is applied for simulating the cracking process. In addition, four simplified analytical models are introduced for comparative purposes. Under some assumptions about rust properties, corrosion rate, and particularly, the accommodation of oxide products within the open cracks generated in the process, the proposed FE model is able to estimate time to surface cracking quite accurately. Moreover, emerging cracking patterns are in reasonably good agreement with expectations. As a practical case, a prototype application of the model to an actual bridge deck is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fiber-reinforced polymer (FRP) composites for strengthening, repairing, or rehabilitating concrete structures has become more and more popular in the last 10 years. Irrespective of the type of strengthening used, design is conditioned, among others, by concrete-composite bond failure, normally attributed to stress at the interface between these two materials. Single shear, double shear, and notched beam tests are the bond tests most commonly used by the scientific community to estimate bond strength, effective length, and the bond stress-slip relationship. The present paper discusses the effect of concrete strength and adhesive thickness on the results of beam tests, which reproduce debonding conditions around bending cracks much more accurately. The bond stress-slip relationship was analyzed in a cross section near the inner edge, where stress was observed to concentrate. The ultimate load and the bond stress-slip relationship were visibly affected by concrete strength. Adhesive thickness, in turn, was found to have no significant impact on low-strength concrete but a somewhat greater effect on higher strength materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of cyclic loading tests on two large-scale reinforced concrete structural walls that were conducted at Purdue University. One of the walls had confinement reinforcement meeting ACI-318-11 requirements while the other wall did not have any confinement reinforcement. The walls were tested as part of a larger study aimed at indentifying parameters affecting failure modes observed to limit the drift capacity of structural walls in Chile during the Maule Earthquake of 2010. These failure modes include out-of-plane buckling (of the wall rather tan individual reinforcing bars), compression failure, and bond failure. This paper discusses the effects of confinement on failure mode. Distributions of unit strain and curvature obtained with a dense array of non-contact coordinate-tracking targets are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates the ultimate earthquake resistance of typical RC moment resisting frames designed accordingly to current standards, in terms of ultimate energy absorption/dissipation capacity. Shake table test of a 2/5 scale model, under several intensities of ground motion, are carried out. The loading effect of the earthquake is expressed as the total energy that the quake inputs to the structure, and the seismic resistance is interpreted as the amount of energy that the structure dissipates in terms of cumulative inelastic strain energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many university courses such as Building Engineering or Technical Architectural, the high density of the contents included in the curriculum, make the student, after graduation, unable to develop the skills already acquired and evaluated in the disciplines of the first courses. From the Group of Educational Innovation at the Polytechnic University of Madrid (UPM) "Teaching of Structural Concrete" (GIEHE) we have conducted a study in which are valued specific skills acquired by students after the first courses of career. We have worked with students from UPM fourth-year career and with Technical Architecture students who have completed their studies and also have completed the Adaptation Course of Technical Architecture to the Building Engineer. The work is part of the Educational Innovation Project funded by the UPM "Integration of training and assessment of generic and specific skills in structural concrete" We have evaluated specific skills learned in the areas of durability and control of structural concrete structures. The results show that overall, students are not able to fully develop the skills already acquired earlier, even being these essential to their professional development. Possibly, the large amount of content taught in these degrees together with a teaching and assessment of "flat profile", ie, which are presented and evaluated with the same intensity as the fundamental and the accessory, are causes enough to cause these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se describe el problema del hinchamiento del hormigón en las presas de doble curvatura. Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. The object of the work reported is to simulate the underlying mechanisms with sufficient accuracy to reproduce the past history and to predict the future evolution reliably. Having studied the available formulations, that considered to be more promising was adopted and introduced via user routines in a commercial finite element code. It is a non isotropic swelling model,compatible with the cracking and other non-linearities displayed by the concrete. The paper concentrates on the work conducted for a double-curvature arch dam. The model parameters were determined on the basis of some parts of the dam’s monitored histories, reliability was then verified using other parts and, finally, predictions were made about the future evolution of the dam and its safety margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La aparición de la fatiga ha sido ampliamente investigada en el acero y en otros materiales metálicos, sin embargo no se conoce en tanta profundidad en el hormigón estructural. Esto crea falta de uniformidad y enfoque en el proceso de verificación de estructuras de hormigón para el estado límite último de la fatiga. A medida que se llevan a cabo más investigaciones, la información sobre los parámetros que afectan a la fatiga en el hormigón comienzan a ser difundidos e incluso los que les afectan de forma indirecta. Esto conlleva a que se estén incorporando en las guías de diseño de todo el mundo, a pesar de que la comprobación del estado límite último no se trata por igual entre los distintos órganos de diseño. Este trabajo presentará un conocimiento básico del fenómeno de la fatiga, qué lo causa y qué condiciones de carga o propiedades materiales amplían o reducen la probabilidad de fallo por fatiga. Cuatro distintos códigos de diseño serán expuestos y su proceso de verificación ha sido examinado, comparados y valorados cualitativa y cuantitativamente. Una torre eólica, como ejemplo, fue analizada usando los procedimientos de verificación como se indica en sus respectivos códigos de referencia. The occurrence of fatigue has been extensively researched in steel and other metallic materials it is however, not as broadly understood in concrete. This produces a lack of uniformity in the approach and process in the verification of concrete structures for the ultimate limit state of fatigue. As more research is conducted and more information is known about the parameters which cause, propagate, and indirectly affect fatigue in concrete, they are incorporated in design guides around the world. Nevertheless, this ultimate limit state verification is not addressed equally by various design governing bodies. This report presents a baseline understanding of what the phenomenon of fatigue is, what causes it, and what loading or material conditions amplify or reduce the likelihood of fatigue failure. Four different design codes are exposed and their verification process has been examined, compared and evaluated both qualitatively and quantitatively. Using a wind turbine tower structure as case study, this report presents calculated results following the verification processes as instructed in the respective reference codes.