991 resultados para Prestress losses
Resumo:
Paper submitted to e-conservation Journal: Maria Leonor Oliveira, Leslie Carlyle, Sara Fragoso, Isabel Pombo Cardoso and João Coroado, “Investigations into paint delamination and consolidation of an oil painting on copper support”.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
Applying a certain prestress level to the carbon fiber reinforced polymer (CFRP) reinforcement according to either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques can mobilize the strengthening potentialities of this high tensile strength composite material. For the prediction of the flexural behavior of reinforced concrete (RC) structures strengthened with prestressed EBR or NSM CFRPs, however, simplified analytical and design formulations still need to be developed as a guidance for engineers to design this type of strengthened structures by hand calculation without any programming help. Hence, the current work aims to briefly explain a developed simplified analytical approach, with a design framework, to predict the flexural behavior of RC beams flexurally strengthened with either prestressed EBR or NSM CFRP reinforcements. Moreover, an upper limit for the prestress level is proposed in order to optimize the ductility performance of the NSM prestressing technique. The good predictive performance of the analytical approaches was appraised by simulating the results of experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.
Resumo:
Accepted Manuscript
Resumo:
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.
Resumo:
Companies from the motorcycles components branch are dealing with a dynamic environment, resulting from the introduction of new products and the increase of market demand. This dynamic environment requires frequent changes in production lines and requires flexibility in the processes, which can cause reductions in the level of quality and productivity. This paper presents a Lean Six Sigma improvement project performed in a production line of the company's machining sector, in order to eliminate losses that cause low productivity, affecting the fulfillment of the production plan and customer satisfaction. The use of Lean methodology following the DMAIC stages allowed analyzing the factors that influence the line productivity loss. The major problems and causes that contribute to a reduction on productivity and that were identified in this study are the lack of standardization in the setup activities and the excessive stoppages for adjustment of the processes that caused an increase of defects. Control charts, Pareto analysis and cause-and-effect diagrams were used to analyze the problem. On the improvement stage, the changes were based on the reconfiguration of the line layout as well as the modernization of the process. Overall, the project justified an investment in new equipment, the defective product units were reduced by 84% and an increase of 29% of line capacity was noticed.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
Dissertação de mestrado em Direito dos Contratos e das Empresas
Resumo:
Poster
Resumo:
This study evaluated different cooking processes (roasted, cooked and fried) on total mercury (Hg) content in fish species most consumed by Manaus residents and surrounding communities, Amazon region. The results obtained for total Hg in natura and after the three types of preparation (roasted, cooked and fried) for 12 fish species showed a significant Hg concentration variation. In the present study the cooked and frying processes resulted in higher Hg losses for Pacu, Pescada, Jaraqui, Curimatã, Surubin and Aruanã fish species, most of them presenting detritivorous and carnivorous feeding habits. The higher Hg losses in the roasting process occurred for Sardinha, Aracu, Tucunaré, Pirapitinga, Branquinha and Tambaqui fish species, most of them being omnivorous and herbivorous fish species. Some micronutrients (Ca, Fe, K, Na, Se and Zn) in fish species in natura were also determined in order to perform a nutritional evaluation regarding these micronutrients.
Resumo:
Dissertação de mestrado em Engenharia Industrial