914 resultados para Powder metallurgy. Nickel. Alloy carrier. Silicon carbide and silicon nitride
Resumo:
Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest
Resumo:
Purpose: This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns.Materials and Methods: Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05).Results: Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P < 0.05).Conclusions: All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage. (Implant Dent 2012;21:46-50)
Resumo:
Foram utilizados 40 ratos Wistar, machos, com peso inicial médio de 225 gramas, separados em dois grupos. Após serem anestesiados com éter, foi induzida uma ferida limpa na região torácica dorsal cranial, mediante a utilização de molde metálico de 2,0 x 1,5cm. No grupo I, foi utilizada pomada contendo óleo de fígado de bacalhau, extrato de confrei, extrato cítrico, óxido de zinco e veículo (Creamex®); no grupo II, a ferida foi apenas limpa com solução salina isotônica. Para a avaliação histológica, foram submetidos à eutanásia cinco animais de cada grupo no 3º, 7º, 14º e 21º dia de pós-operatório. O grupo tratado com a pomada orgânica apresentou padrão cicatricial de qualidade superior em relação ao grupo tratado com salina isotônica, representado por formação de fibras colágenas, neoformação de vasos e reepitelização completa da epiderme.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nesse trabalho, procurou-se estudar os mecanismos de desgaste de diversas geometrias de ferramentas cerâmicas (Al2O3 + SiCw e Al2O3 + TiC) e ferramentas de PCBN. Para isto foram realizados ensaios de torneamento com alta velocidade de corte em uma superliga à base de níquel (Waspaloy) com dureza de aproximadamente 40 HRC sob condição de corte a seco. As superligas são conhecidas como materiais de difícil usinabilidade devido à alta dureza, alta resistência mecânica em alta temperatura, afinidade para reagir com materiais da ferramenta e baixa condutividade térmica. Os resultados mostraram que o material da ferramenta e a geometria influenciaram o comportamento dos mecanismos de desgaste. de uma maneira geral, o tipo de desgaste dominante foi o de entalhe e os mecanismos foram abrasão, attrition (aderência com arrastamento) e provável difusão na maioria das ferramentas utilizadas.
Resumo:
De acordo com a necessidade de aumentar a produção de mudas de azaléia por meio da propagação vegetativa, em menor intervalo de tempo, foi proposto estudar os efeitos de diferentes substratos e concentrações de ANA (ácido naftalenoacético). O experimento foi conduzido em esquema fatorial 3X4 com três substratos (areia grossa lavada, casca de arroz carbonizada e húmus) e quatro concentrações de ANA na forma de pó (0; 2,5; 5,0 e 7,5%). Utilizaram-se estacas de 100 mm de comprimento retiradas da porção apical do ramo, sem gema apical e com corte em bisel na parte superior, deixando um par de folhas cortadas ao meio. Essas foram colocadas para enraizar em bandejas de isopor de 128 células, por um período de 90 dias, nas quais avaliaram-se: comprimento, superficie, volume e diâmetro radicular e a porcentagem de estacas enraizadas, sobreviventes, mortas e número de brotos. Pode-se concluir que a maior porcentagem de enraizamento foi obtida no substrato de casca de arroz carbonizada e com ANA na concentração de 5%.
Resumo:
Two series of lead zirconate titanate (PZT) ceramics with composition Zr/Ti approximate to 53/47 have been prepared by the organic solution route. The effects on the electrical properties of calcination temperature in one series and of sintering time period in the other were examined. Dielectric constant, electrical conductivity and impedance spectroscopy results differed from one series to the other, probably due to differences in structure of the precursor powders, as seen by X-ray diffraction. Tetragonal and rhombohedral phases predominate in the powders used, respectively, in the calcined and sintered series. Physical and electrical behavior of ceramics prepared from predominantly rhombohedral powder suggests the evaporation of PbO. The presence of two semi-circles in impedance plots leads to the association of the low frequency semi-circle to the presence of PbO, which, apparently, was not eliminated from ceramics prepared from predominantly tetragonal powder. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
SrBi2Ta2O9 ferroelectric thick films prepared by electrophoretic deposition using aqueous suspension
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol.% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). It was investigated the influence of the different dispersants in the surface properties of the powder by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by a 4 mA constant current, for 10 min, using two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit were carried out until reaching the desired thickness. After thermal treatment at temperatures ranging from 700 to 1000 degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy for the microstructure observation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Solid-state M-EDTA chelates, where M represents the divalent ions Mg(II), Ca(II), Sr(II) or Ba(II) and EDTA is ethylenediaminetetraacetate anion, were synthesized. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal behaviour of these chelates. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). The influence of the different dispersants on the powder surface properties were investigated by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by electrophoretic deposition using a 4 mA constant current, for 10 min, with two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit was carried out until the desired thickness was obtained. After thermal treatment at temperatures ranging from 700 to 1000degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy.
Resumo:
The partial oxalate method, with the columbite route, associated with the Pechini method, was used to obtain a very fine ceramic powder at low temperature. Using this route it was possible to obtain a very reactive powder and to synthesize a lead magnesium niobate (PMN) powder with up to 100% of perovskite phase at a lower temperatures than the PbO melting point. The influence of the BaTiO3 and PbTiO3 seeds in the phase formation, along with time and temperature during the PMN calcination, was also investigated. The amount of 2% of BaTiO3 seeds promoted PMN powder formation with 100% of perovskite phase and a very narrow particle size distribution. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Phase separation suppression due to external biaxial strain is observed in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect is taking place in thin epitaxial layers pseudomorphically grown by molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio calculations carried out for the alloy free energy predict and Raman measurements confirm that biaxial strain suppress the formation of phase-separated In-rich quantum dots in the InxGa1-xN layers. Since quantum dots are effective radiative recombination centers in InGaN, we conclude that strain quenches an important channel of light emission in optoelectronic devices based on pseudobinary group-III nitride semiconductors. (C) 2002 American Institute of Physics.