979 resultados para Potato starch
Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum
Resumo:
This work reports on the effect of initial substrate concentration on COD consumption, pH, and H(2) production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H(2) yield as well as less efficient substrate conversion into H(2). On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H(2)/mol glucose, with efficiency of glucose conversion into H(2) of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H(2) production by C acetobutylicum at lower COD concentrations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
Here we investigated the possible association between the carboxypeptidase A (CPA)-like activity of the rat mesenteric arterial bed (MAB) perfusate and the ability of this fluid of forming angiotensin (Ang) 1-9 and Ang 1-7 upon incubation with Ang I and Ang II, respectively. Initially, we observed that anion exchange chromatography of the perfusate would consistently split the characteristic Z-Val-Phe-hydrolyzing activity of CPA-like enzymes into five distinct peaks, whose proteolytic activities were then determined using also Ang I and Ang II as substrates. The resulting proteolytic profile for each peak indicated that rat MAB perfusate contains a complex mixture of carboxypeptidases; tentatively, five carboxypeptidases were distinguished based on their substrate preferences toward Z-Val-Phe. Ang I and Ang II. The respective reactions, namely, Z-Val-Phe cleavage, Ang I to Ang 1-9 conversion and Ang II to Ang 1-7 conversion, were inhibited by 1,10-phenanthroline and nearly fully blocked by potato carboxypeptidase inhibitor. Also, all the CPA-like activity peaks prepared by anion exchange chromatography were tested negative for contaminating Ang I-converting enzyme-2, cathepsin A and prolylcarboxypeptidase. Overall, our results indicate that rat MAB perfusate contains a multiplicity of Ang I and Ang II-processing CPA-like enzymes whose proteolytic specificities suggest they might perform peculiar regulatory roles in the local resin-angiotensin system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper focuses on the higher order factors affecting successful adoption of technologies. Drawing on the "actor-oriented perspective" in rural sociology, it is argued that successful examples of adoption at this higher level result from a complex conjunction of people and events, with outcomes that may have been quite unanticipated at the outset. From this perspective, research and extension projects and programs are viewed as arenas in which social actors–village leaders, farmers, researchers (local and international), aid officials, municipal agents, extension workers, and traders–pursue their own short- and long-term objectives and strategies. To this end, they maneuver, negotiate, organize, cooperate, participate, coerce, obstruct, form coalitions, adopt, adapt, and reject, all within a specific geographical and historical context.
Resumo:
Treatment of Aspergillus niveus with 30 mu g tunicamycin/ml did not interfere with alpha-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, similar to 56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65A degrees C). The K(m) and V(max) values of under- and fully-glycosylated forms of alpha-glucosidase were similar when assessed for hydrolysis of starch (similar to 0.6 mg/ml, similar to 350 mu mol glucose per min per ml), maltose (similar to 0.54 mu mol, similar to 330 mu mol glucose per min per ml) and p-nitrophenyl-alpha-d-glucopyranoside (similar to 0.54 mu mol, similar to 8.28 mu mol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.
Resumo:
Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This work aimed at an evaluation of the classical iodine method for quantification of vitamin C (L-ascorbic acid) in fruit juices, as well as at a search into the stability of this so popular vitamin under different conditions of pH, temperature and light exposition, in addition to a proposal of a new quantification method. Our results point to the persistent reversibility of the blue color of the starch-triiodide complex at the end point when using the classical iodine titration, and the overestimation of the true vitamin concentration in fruit juices. A new quantification method is proposed in order to overcome this problem. Surprising conclusions were obtained regarding the controversial stability of L-ascorbic acid toward atmospheric oxygen, at low pH, even in fruit juice and at room temperature, showing that the major problem concerned with aging of fruit juices is proliferation of microorganisms rather than expontaneous oxidation of L-ascorbic acid.
Resumo:
The effects of six extruded diets with different starch sources (cassava flour, brewer`s rice, corn, sorghum, peas or lentils) on dog total tract apparent digestibility and glycemic and insulinemic response were investigated. The experiment was carried out on thirty-six dogs with six dogs per diet in a completely randomized design. The diets containing brewer`s rice and cassava flour presented the greatest digestibility of dry matter, organic matter and gross energy (p < 0.05), followed by corn and sorghum; pea and lentil diets had the lowest. Starch digestibility was greater than 98% in all diets and was greater for brewer`s rice and cassava flour than for lentils and peas diets (p < 0.05). Dogs` immediate post-prandial glucose and insulin responses (AUC <= 30 min) were greater for brewer`s rice, corn, and cassava flour diets (p < 0.05), and later meal responses (AUC >= 30 min) were greater for sorghum, lentil and pea diets (p < 0.05). Variations in diet digestibility and post-prandial response can be explained by differences in chemical composition of each starch source including fibre content and starch granule structure. The nutritional particularities of each starch ingredient can be explored through diet formulations designed to modulate glycemic response. However, more studies are required to support these.
Resumo:
The effects of diets with different starch sources on the total tract apparent digestibility and glucose and insulin responses in cats were investigated. Six experimental diets consisting of 35% starch were extruded, each containing one of the following ingredients: cassava flour, brewers rice, corn, sorghum, peas, or lentils. The experiment was carried out on 36 cats with 6 replications per diet in a completely randomized block design. The brewers rice diet offered greater DM, OM, and GE digestibility than the sorghum, corn, lentil, and pea diets (P < 0.05). For starch digestibility, the brewers rice diet had greater values (98.6%) than the sorghum (93.9%), lentil (95.2%), and pea (96.3%) diets (P < 0.05); however, starch digestibility was > 93% for all the diets, proving that despite the low carbohydrate content of carnivorous diets, cats can efficiently digest this nutrient when it is properly processed into kibble. Mean and maximum glucose concentration and area under the glucose curve were greater for the corn-based diet than the cassava flour, sorghum, lentil, and pea diets (P < 0.05). The corn-based diets led to greater values for the mean glucose incremental concentration (10.2 mg/dL), maximum glucose incremental concentration (24.8 mg/dL), and area under the incremental glucose curve (185.5 mg.dL(-1).h(-1)) than the lentil diet (2.9 mg/dL, 3.1 mg/dL, and -40.4 mg.dL(-1).h(-1), respectively; P < 0.05). When compared with baseline values, only the corn diet stimulated an increase in the glucose response, occurring at 4 and 10 h postmeal (P < 0.05). The corn-based diet resulted in greater values for maximum incremental insulin concentration and area under the incremental insulin curve than the lentil-based diet (P < 0.05). However, plasma insulin concentrations rose in relation to the basal values for cats fed corn, sorghum, pea, and brewers rice diets (P < 0.05). Variations in diet digestibility and postprandial response can be explained by differences in the chemical composition of the starch source, including fiber content and granule structure, and also differences in the chemical compositions of the diets. The data suggest that starch has less of an effect on the cat postprandial glucose and insulin responses than on those of dogs and humans. This can be explained by the metabolic peculiarities of felines, which may slow and prolong starch digestion and absorption, leading to the delayed, less pronounced effects on their blood responses.
Resumo:
Nine ruminally cannulated cows fed different energy sources were used to evaluate an avian-derived polyclonal antibody preparation (PAP-MV) against the specific ruminal bacteria Streptococcus bovis, Fusobacterium necrophorum, Clostridium aminophilum, Peptostreptococcus anaerobius, and Clostridium stick-landii and monensin (MON) on ruminal fermentation patterns and in vivo digestibility. The experimental design was three 3 x 3 Latin squares distinguished by the main energy source in the diet [dry-ground corn grain (CG), high-moisture corn silage (HMCS), or citrus pulp (CiPu)]. Inside each Latin square, animals received one of the feed additives per period [none (CON), MON, or PAP-MV]. Dry matter intake and ruminal fermentation variables such as pH, total short-chain fatty acids (tSCFA), which included acetate, propionate, and butyrate, as well as lactic acid and NH(3)-N concentration were analyzed in this trial. Total tract DM apparent digestibility and its fractions were estimated using chromic oxide as an external marker. Each experimental period lasted 21 d. Ruminal fluid sampling was carried out on the last day of the period at 0, 2, 4, 6, 8, 10, and 12 h after the morning meal. Ruminal pH was higher (P = 0.006) 4 h postfeeding in MON and PAP-MV groups when compared with CON. Acetate: propionate ratio was greater in PAP-MV compared with MON across sampling times. Polyclonal antibodies did not alter (P > 0.05) tSCFA, molar proportion of acetate and butyrate, or lactic acid and NH(3)-N concentration. Ruminal pH was higher (P = 0.01), 4 h postfeeding in CiPu diets compared with CG and HMCS. There was no interaction between feed additive and energy source (P > 0.05) for any of the digestibility coefficients analyzed. Starch digestibility was less (P = 0.008) in PAP-MV when compared with CON and MON. In relation to energy sources, NDF digestibility was greater (P = 0.007) in CG and CiPu vs. the HMCS diet. The digestibility of ADF was greater (P = 0.002) in CiPu diets followed by CG and HMCS. Feeding PAP-MV or monensin altered ruminal fermentation patterns and digestive function in cows; however, those changes were independent of the main energy source of the diet.
Resumo:
Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B(2) and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B, and C when CW replaced NDF; however there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B(1) (starch + pectin) values were lower than pectin determined through wet chemistty. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B(1) but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B(3)) be adopted for the digestible cell wall carbohydrates.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.