1000 resultados para Plagioclase
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-Gruber- Anorthosite body, central Dronning Maud Land, East Antarctica, contain varying amounts of small calcite, paragonite and pyrophyllite crystals detected by Raman microspectroscopy. These crystals are reaction products that have formed during cooling of the host and the original CO2-rich H2O-bearing enclosed fluid. Variable amounts of these reaction products illustrates that the reaction did not take place uniformly in all fluid inclusions, possibly due to differences in kinetics as caused by differences in shape and size, or due to compositional variation in the originally trapped fluid. The reaction albite + 2anorthite + 2H2O + 2CO2 = pyrophyllite + paragonite + 2calcite was thermodynamically modelled with consideration of different original fluid compositions. Although free H2O is not detectable in most fluid inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid was not pure CO2, but contained significant amounts of H2O. Compared to an actual fluid inclusion it is obvious, that volume estimations of solid phases can be used as a starting point to reverse the retrograde reaction and recalculate the compositional and volumetrical properties of the original fluid. Isochores for an unmodified inclusion can thus be reconstructed, leading to a more realistic estimation of P-T conditions during earlier metamorphic stages or fluid capturing.
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.
Resumo:
The compositions of abyssal glasses obtained on Leg 82 of the awGlomar Challenger and the MAPCO cruise of Jean Charcot have been investigated. Two main compositional groups of Atlantic glasses (A1 and A2) that are separated in space and time were identified. The distribution of these groups in the studied area allowed mapping of the transition zone from A1 to A2 between 30-35°N MAR. We infer that the compositional groups of abyssal glasses of the Atlantic and other oceans reflect the depth of separation of primary melts from the oceanic mantle. Specifically, the primary melt of Group A1 separates from the mantle at a depth of 30-60 km (spinel-peridotite facies) and those for Group A2 from a depth of 15-30 km (plagioclase-peridotite facies). Modifications of dynamic models of the ocean lithosphere are discussed.
Resumo:
New data on bottom sediments and igneous rocks of the Philippine Trench are under consideration. They show differences in geological structures of the island slope and the ocean slope of the trench. The island slope is comparable to the accretionary prism formations on the Philippines; there processes of gravitational re-deposition of sediments occur. The ocean slope is an edge of the Philippine Plate sinking into the trough, where basalts of the oceanic crust are exposed.
Resumo:
On the bed and on the ocean slope of the southern latitudinal part of the Mariana Trench ancient sediments, as well as sedimentary and igneous rocks are exposed. In the lower part of the sampled part of the studied section Late Oligocene to Early Miocene chalk-like limestones and marls occur. Upward marly tuffites and tuffs (apparently alternating with carbonate rocks) occur. These rocks are overlain by Early Miocene tuffaceous clays and siliceous-clayey muds. In the upper part of the section there are Pleistocene pelagic clays and ethmodiscus oozes.
Resumo:
From X-ray mineralogical studies and chemical analyses of the whole rocks and the fine fractions (<2 µm) of ten to fifteen samples at each site of ODP Leg 124, two major sources were identified in the sedimentary components of the Celebes and Sulu basins: (1) a terrestrial and continental contribution; (2) a volcanic influx that gives way to well-defined volcanic units or to a dilute contamination, consisting of coarse-grained minerals (Plagioclase, pyroxene, olivine, spinel) or a smectitic-rich fraction produced by the alteration of volcanic glasses and ashes. The continental signature increases the amount of quartz in the rocks and the phyllitic association is complex: micas, kaolinite, disordered interstratified clay-minerals. The chemical compositions of the bulk rocks and the fractions <2 µm are more potassic and aluminum-rich. The volcanic imprint depends on the grain-size and chemical properties of the components. Ca/Na contents highly variable compared to the K content of the bulk composition are due to the presence of coarse-grained volcanic Plagioclase. The fractions <2 µm are more magnesian than in the continental regime. The diagenesis is revealed by the crystallization of zeolites, the fixation of magnesium into the smectites that depletes the pore fluids in this element. Smectitization of the disordered interstratified clay minerals enriches the alkalinity of the pore fluids. Some deep formations of the Sulu Basin are affected by a thermal event, but no thermal event was recognized in the Celebes Basin.
Resumo:
Major and trace element compositions of basalts from the lower part of Hole 504B indicate their cogenetic nature. The cored sequence of interlayered pillow lavas and massive lava flows was produced by eruption of lavas, slightly variable in composition. Plagioclase and olivine crystallization in a shallow magma chamber, followed by small-scale fractionation at higher levels, is responsible for these variations. Except in highly fractured zones within the basement, there are systematic variations in the style and degree of rock alteration with depth. Trace element characteristics of altered rocks and secondary minerals indicate that progressive changes in sea water composition occurred as it reacted with basaltic crust.
Resumo:
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ~0.1 (Ir, Ru) to ~5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (~30%) and fractional crystallization (~45%). First order approximations of the fractionation required to produce the KP basalts from an ~30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]_pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.