986 resultados para PHARMACEUTICAL SOLID POLYMORPHISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer from a solid phase to an impinging non-isothermal liquid droplet is studied numerically. A new approach based on an arbitrary Lagrangian-Eulerian (ALE) finite element method for solving the incompressible Navier Stokes equations in the liquid and the energy equation within the solid and the liquid is presented. The novelty of the method consists in using the ALE-formulation also in the solid phase to guarantee matching grids along the liquid solid interface. Moreover, a new technique is developed to compute the heat flux without differentiating the numerical solution. The free surface and the liquid solid interface of the droplet are represented by a moving mesh which can handle jumps in the material parameter and a temperature dependent surface tension. Further, the application of the Laplace-Beltrami operator technique for the curvature approximation allows a natural inclusion of the contact angle. Numerical simulation for varying Reynold, Weber, Peclet and Biot numbers are performed to demonstrate the capabilities of the new approach. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of crystal forms, polymorphs and pseudopolymorphs, have been isolated in the phloroglucinol-dipyridylethylene (PGL:DPE) and phloroglucinol-phenazine (PGL:PHE) systems. An understanding of the intermolecular interactions and synthon preferences in these binary systems enables one to design a ternary molecular solid that consists of PGL, PHE, and DPE, and also others where DPE is replaced by other heterocycles. Clean isolation of these ternary cocrystals demonstrates synthon amplification during crystallization. These results point to the lesser likelihood of polymorphism in multicomponent crystals compared to single-component crystals. The appearance of several crystal forms during crystallization of a multicomponent system can be viewed as combinatorial crystal synthesis with synthon selection from a solution library. The resulting polymorphs and pseudopolymorphs that are obtained constitute a crystal structure landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Projection Reconstruction (PR) to obtain two-dimensional (2D) spectra from one-dimensional (1D) data in the solid state is illustrated. The method exploits multiple 1D spectra obtained using magic angle spinning and off-magic angle spinning. The spectra recorded under the influence of scaled heteronuclear scalar and dipolar couplings in the presence of homonuclear dipolar decoupling sequences have been used to reconstruct J/D Resolved 2D-NMR spectra. The use of just two 1D spectra is observed sufficient to reconstruct a J-resolved 2D-spectrum while a Separated Local Field (SLF) 2D-NMR spectrum could be obtained from three 1D spectra. The experimental techniques for recording the 10 spectra and procedure of reconstruction are discussed and the reconstructed results are compared with 20 experiments recorded in traditional methods. The application of the technique has been made to a solid polycrystalline sample and to a uniaxially oriented liquid crystal. Implementation of PR-NMR in solid state provides high-resolution spectra as well as leads to significant reduction in experimental time. The experiments are relatively simple and are devoid of several technical complications involved in performing the 2D experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Themono-alkylation of DPP derivatives leads to cofacial pi-pi stacking via H-bonding unlike their di-alkylated counterparts, which exhibit a classical herringbone packing pattern. Single crystal organic field-effect transistor (OFET) measurements reveal a significant enhancement of charge carrier mobility for mono-hexyl DPP derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Codoping with Cu and Mo is shown to have a synergistic effect on the photocatalytic activity of TiO2. The enhancement in activity is observed only if the synthesis route results in TiO2 in which (Cu, Mo) codopants are forced into the TiO2 lattice. Using X-ray photoelectron spectroscopy, Cu and Mo are shown to be present in the +2 and +6 oxidation states, respectively. A systematic study of the ternary system shows that TiO2 containing 6 mol % CuO and 1.5 mol % MoO3 is the most active ternary composition. Ab initio calculations show that codoping of TiO2 using (Mo, Cu) introduces levels above the valence band, and below the conduction band, resulting in a significant reduction in the band gap (similar to 0.8 eV). However, codoping also introduces deep defect states, which can have a deleterious impact on photoactivity. This helps rationalize the narrow compositional window over which the enhancement in photocatalytic activity is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanocrystals (NCs) possess high photoluminescence (PL) typically in the solution phase. In contrary, PL rapidly quenches in the solid state. Efficient solid state luminescence can be achieved by inducing a large Stokes shift. Here we report on a novel synthesis of compositionally controlled CuCdS NCs in air avoiding the usual complexity of using inert atmosphere. These NCs show long-range color tunability over the entire visible range with a remarkable Stokes shift up to about 1.25eV. Overcoating the NCs leads to a high solid-state PL quantum yield (QY) of ca. 55% measured by using an integrating sphere. Unique charge carrier recombination mechanisms have been recognized from the NCs, which are correlated to the internal NC structure probed by using extended X-ray absorption fine structure (EXAFS) spectroscopy. EXAFS measurements show a Cu-rich surface and Cd-rich interior with 46% Cu-I being randomly distributed within 84% of the NC volume creating additional transition states for PL. Color-tunable solid-state luminescence remains stable in air enabling fabrication of light-emitting diodes (LEDs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rrp1B (ribosomal RNA processing1 homolog B) is a novel candidate metastasis modifier gene in breast cancer. Functional gene assays demonstrated that a physical and functional interaction existing between Rrp1b and metastasis modifier gene SIPA1 causes reduction in the tumor growth and metastatic potential. Ectopic expression of Rrp1B modulates various metastasis predictive extra cellular matrix (ECM) genes associated with tumor suppression. The aim of this study is to determine the functional significance of single nucleotide polymorphism (SNP) in human Rrp1B gene (1307 T > C; rs9306160) with breast cancer development and progression. The study consists of 493 breast cancer cases recruited from Nizam's Institute of Medical Sciences, Hyderabad, and 558 age-matched healthy female controls from rural and urban areas. Genomic DNA was isolated by non-enzymatic method. Genotyping was done by amplification refractory mutation system (ARMS-PCR) method. Genotypes were reconfirmed by sequencing and results were analyzed statistically. We have performed Insilco analysis to know the RNA secondary structure by using online tool m fold. The TT genotype and T allele frequencies of Rrp1B1307 T > C polymorphism were significantly elevated in breast cancer (chi (2); p = < 0.008) cases compared to controls under different genetic models. The presence of T allele had conferred 1.75-fold risk for breast cancer development (OR = 1.75; 95 % CI = 1.15-2.67). The frequency of TT genotype of Rrp1b 1307T > C polymorphism was significantly elevated in obese patients (chi (2); p = 0.008) and patients with advanced disease (chi (2); p = 0.01) and with increased tumor size (chi (2); p = 0.01). Moreover, elevated frequency of T allele was also associated with positive lymph node status (chi (2); p = 0.04) and Her2 negative receptor status (chi (2); p = 0.006). Presence of Rrp1b1307TT genotype and T allele confer strong risk for breast cancer development and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the municipal solid waste settlements and the contribution of each of the components are essential in the estimation of the volume of the waste that can be accommodated in a landfill and increase the post-usage of the landfill. This article describes an experimental methodology for estimating and separating primary settlement, settlement owing to creep and biodegradation-induced settlement. The primary settlement and secondary settlement have been estimated and separated based on 100% pore pressure dissipation time and the coefficient of consolidation. Mechanical creep and biodegradation settlements were estimated and separated based on the observed time required for landfill gas production. The results of a series of laboratory triaxial tests, creep tests and anaerobic reactor cell setups were conducted to describe the components of settlement. All the tests were conducted on municipal solid waste (compost reject) samples. It was observed that biodegradation accounted to more than 40% of the total settlement, whereas mechanical creep contributed more than 20% towards the total settlement. The essential model parameters, such as the compression ratio (C-c'), rate of mechanical creep (c), coefficient of mechanical creep (b), rate of biodegradation (d) and the total strain owing to biodegradation (E-DG), are useful parameters in the estimation of total settlements as well as components of settlement in landfill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents modification of the derivation of a previously proposed constitutive model for the prediction of stress-strain behavior of municipal solid waste (MSW) incorporating different mechanisms, such as immediate compression under loading, mechanical creep, and time-dependent biodegradation effect. The model is based on critical state soil mechanics incorporating increments in volumetric strains because of elastic, plastic, creep, and biodegradation effects. The improvement introduced in this paper is the modified critical state surface and considers five variable parameters for the estimation of stress-strain behavior of MSW under different loading conditions. In addition, an expression for the strain hardening rule is derived, with considerations of time-dependent mechanical creep and biodegradation effects. The model is validated using results from experimental studies and data from published literature. The results are also compared with the predictions of the stress-strain response obtained from a well-established hyperbolic model. (c) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new one-pot version of the titled reaction involves heating a mixture of a carbonyl compound, a phenylhydrazine, and the cation exchange resin Amberlite IR 120 in refluxing ethanol. A variety of enolizable aldehydes, and ketones and several substituted phenylhydrazines could thus be converted to the corresponding indoles in excellent yields (70-88%). Reaction times were typically 6-10 h, with the resin being then filtered off and the product isolated after minimal workup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative evaluation of the mechanical behavior of molecular materials by a nanoindentation technique has gained prominence recently. However, all the reported data have been on room-temperature properties despite many interesting phenomena observed in them with variations in temperature. In this paper, we report the results of nanoindentation experiments conducted as a function of temperature, T, between 283 and 343 K, on the major faces of three organic crystals: saccharin, sulfathiazole (form 2), and L-alanine, which are distinct in terms of the number and strength of intermolecular interactions in them. Results show that elastic modulus, E, and hardness, H, decrease markedly with increasing T. While E decreases linearly with T, the variations in H with T are not so, and were observed to drop by similar to 50% over the range of T investigated. The slope of the linear fits to E vs T for the organic crystals was found to be around 1, which is considerably higher than the values of 0.3-0.5 reported in the literature for metallic, ionic, and covalently bonded crystalline materials. Possible implications of the observed remarkable changes in H for pharmaceutical manufacturing are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.