1000 resultados para Overdominant Selection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach towards shape description, based on prototype modification and generalized cylinders, has been developed and applied to the object domains pottery and polyhedra: (1) A program describes and identifies pottery from vase outlines entered as lists of points. The descriptions have been modeled after descriptions by archeologists, with the result that identifications made by the program are remarkably consisten with those of the archeologists. It has been possible to quantify their shape descriptors, which are everyday terms in our language applied to many sorts of objects besides pottery, so that the resulting descriptions seem very natural. (2) New parsing strategies for polyhedra overcome some limitations of previous work. A special feature is that the processes of parsing and identification are carried out simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. the main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5'-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP(+). These GFP(+) cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs), which can then be differentiated terminally for cell therapy and tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoertical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically andbiologically. We suggest a more capable abstraction of the clonal selection principle grounded in probabilistic estimation and approximation and demonstrate how it addresses some of the shortcomings in existing algorithms. We further show that by recasting black-box optimisation as a learning problem, the same abstraction may be re-employed; thereby taking steps toward unifying the clonal selection principle and distinguishing it from natural selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article considers the arguments that have been made in defence of social media screening as well as issues that arise and may effectively erode the reliability and utility of such data for employers. First, the authors consider existing legal frameworks and guidelines that exist in the UK and the USA, as well as the subsequent ethical concerns that arise when employers access and use social networking content for employment purposes. Second, several arguments in favour of the use of social networking content are made, each of which is considered from several angles, including concerns about impression management, bias and discrimination, data protection and security. Ultimately, the current state of knowledge does not provide a definite answer as to whether information from social networks is helpful in recruitment and selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rowland, J.J. (2003) Model Selection Methodology in Supervised Learning with Evolutionary Computation. BioSystems 72, 1-2, pp 187-196, Nov

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rowland, J. J. (2003) Generalisation and Model Selection in Supervised Learning with Evolutionary Computation. European Workshop on Evolutionary Computation in Bioinformatics: EvoBio 2003. Lecture Notes in Computer Science (Springer), Vol 2611, pp 119-130

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Q. Shen. Rough feature selection for intelligent classifiers. LNCS Transactions on Rough Sets, 7:244-255, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Jensen, 'Performing Feature Selection with ACO. Swarm Intelligence and Data Mining,' A. Abraham, C. Grosan and V. Ramos (eds.), Studies in Computational Intelligence, vol. 34, pp. 45-73. 2006.