866 resultados para Neural-Like Networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes the specification of a new function block according to Foundation Fieldbus standards. The new block implements an artificial neural network, which may be useful in process control applications. The specification includes the definition of a main algorithm, that implements a neural network, as well as the description of some accessory functions, which provide safety characteristics to the block operation. Besides, it also describes the block attributes emphasizing its parameters, which constitute the block interfaces. Some experimental results, obtained from an artificial neural network implementation using actual standard functional blocks on a laboratorial FF network, are also shown, in order to demonstrate the possibility and also the convenience of integrating a neural network to Fieldbus devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an analysis of the control law based on an indirect hybrid scheme using neural network, initially proposed for O. Adetona, S. Sathanathan and L. H. Keel. Implementations of this control law, for a level plant of second order, was resulted an oscillatory behavior, even if the neural identifier has converged. Such results had motivated the investigation of the applicability of that law. Starting from that, had been made stability mathematical analysis and several implementations, with simulated plants and with real plants, for analyze the problem. The analysis has been showed the law was designed being despised some components of dynamic of the plant to be controlled. Thus, for plants that these components have a significant influence in its dynamic, the law tends to fail

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex network analysis is a powerful tool into research of complex systems like brain networks. This work aims to describe the topological changes in neural functional connectivity networks of neocortex and hippocampus during slow-wave sleep (SWS) in animals submited to a novel experience exposure. Slow-wave sleep is an important sleep stage where occurs reverberations of electrical activities patterns of wakeness, playing a fundamental role in memory consolidation. Although its importance there s a lack of studies that characterize the topological dynamical of functional connectivity networks during that sleep stage. There s no studies that describe the topological modifications that novel exposure leads to this networks. We have observed that several topological properties have been modified after novel exposure and this modification remains for a long time. Major part of this changes in topological properties by novel exposure are related to fault tolerance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, optic fiber is one of the most used communication methods, mainly due to the fact that the data transmission rates of those systems exceed all of the other means of digital communication. Despite the great advantage, there are problems that prevent full utilization of the optical channel: by increasing the transmission speed and the distances involved, the data is subjected to non-linear inter symbolic interference caused by the dispersion phenomena in the fiber. Adaptive equalizers can be used to solve this problem, they compensate non-ideal responses of the channel in order to restore the signal that was transmitted. This work proposes an equalizer based on artificial neural networks and evaluates its performance in optical communication systems. The proposal is validated through a simulated optic channel and the comparison with other adaptive equalization techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT1A receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 mug in 0.1 mul) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience. The effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions, were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 mug) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT1A autoreceptor blockade in the MRN cannot be accounted fur by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT1A receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects or 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The caffeine is a mild psychostimulant that has positive cognitive effects at low doses, while promotes detrimental effects on these processes at higher doses. The episodic-like memory can be evaluated in rodents through hippocampus-dependent tasks. The dentate gyrus is a hippocampal subregion in which neurogenesis occurs in adults, and it is believed that this process is related to the function of patterns separation, such as the identification of spatial and temporal patterns when discriminating events. Furthermore, neurogenesis is influenced spatial and contextual learning tasks. Our goal was to evaluate the performance of male Wistar rats in episodic-like tasks after acute or chronic caffeine treatment (15mg/kg or 30mg/kg). Moreover, we assessed the chronic effect of the caffeine treatment, as well as the influence of the hippocampus-dependent learning tasks, on the survival of new-born neurons at the beginning of treatment. For this purpose, we used BrdU to label the new cells generated in the dentate gyrus. Regarding the acute treatment, we found that the saline group presented a tendency to have better spatial and temporal discrimination than caffeine groups. The chronic caffeine group 15 mg/kg (low dose) showed the best discrimination of the temporal aspect of episodic-like memory, whereas the chronic caffeine group 30mg/kg (high dose) was able to discriminate temporal order, only in a condition of greater difficulty. Assessment of neurogenesis using immunohistochemistry for evaluating survival of new-born neurons generated in the dentate gyrus revealed no difference among groups of chronic treatment. Thus, the positive mnemonic effects of the chronic caffeine treatment were not related to neuronal survival. However, another plastic mechanism could explain the positive mnemonic effect, given that there was no improvement in the acute caffeine groups

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.