974 resultados para NUCLEAR LOCALIZATION SIGNAL
Resumo:
Purpose To describe the ictal technetium-99 m-ECD SPECT findings in polymicrogyria syndromes (PMG) during epileptic seizures. Methods We investigated 17 patients with PMG syndromes during presurgical workup, which included long-term video-electroencephalographic (EEG) monitoring, neurological and psychiatry assessments, invasive EEG, and the subtraction of ictal-interictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM). Results The analysis of the PMG cortex, using SISCOM, revealed intense hyperperfusion in the polymicrogyric lesion during epileptic seizures in all patients. Interestingly, other localizing investigations showed heterogeneous findings. Twelve patients underwent epilepsy surgery, three achieved seizure-freedom, five have worthwhile improvement, and four patients remained unchanged. Conclusions Our study strongly suggests the involvement of PMG in seizure generation or early propagation. Both conventional ictal single-photon emission computed tomography (SPECT) and SISCOM appeared as the single contributive exam to suggest the localization of the epileptogenic zone. Despite the limited number of resective epilepsy surgery in our study (n=9), we found a strong prognostic role of SISCOM in predicting surgical outcome. This result may be of great value on surgical decision-making of whether or not the whole or part of the PMG lesion should be surgically resected.
Resumo:
Purpose: To evaluate the diagnostic image quality of post-gadolinium water excitation-magnetization-prepared rapid gradient-echo (WE-MPRAGE) sequence in abdominal examinations of noncooperative patients at 1.5 Tesla (T) and 3.0T MRI. Materials and Methods: Eighty-nine consecutive patients (48 males and 41 females; mean age +/- standard deviation, 54.6 +/- 16.6 years) who had MRI examinations including postgadolinium WE-MPRAGE were included in the study. Of 89 patients, 33 underwent noncooperative protocol at 1.5T. 10 under-went noncooperative protocol at 3.0T, and 46 underwent cooperative protocol at 3.0T. Postgadolinium WE-MPRAGE, MPRAGE, and three-dimensional gradient-echo sequences of these three different groups were qualitatively evaluated for image quality, extent of artifacts, lesion conspicuity, and homogeneity of fat-attenuation by two reviewers retrospectively, independently, and blindly. The results were compared using Wilcoxon signed rank and Mann-Whitney U tests. Kappa statistics were used to measure the extent of agreement between the reviewers. Results: The average scores indicated that the images were diagnostic for WE-MPRAGE at 1.5T and 3.0T in noncooperative patients. WE-MPRAGE achieved homogenous fat-attenuation in 31/33 (94%) of noncooperative patients at 1.5T and 10/10 (100%) of noncooperative patients at 3.0T. WE-MPRAGE at 3.0T had better results for image quality, extent of artifacts, lesion conspicuity and homogeneity of fat-attenuation compared with WE-MPRAGE at 1.5T. in noncooperative patients (P = 0.0008, 0.0006, 0.0024, and 0.0042: respectively). Kappa statistics varied between 0.76 and 1.00, representing good to excellent agreement. Conclusion: WE-MPRAGE may be used as a T1-weighted postgadolinium fat-attenuated sequence in noncooperative patients, particularly at 3.0T MRI.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
Resumo:
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals. J. Leukoc. Biol. 87: 885-893; 2010.
Resumo:
Cholecystokinin (CCK) provides a meal-related signal that activates brainstem neurons, which have reciprocal interconnections with the hypothalamic paraventricular nucleus. Neurons that express corticotrophin-releasing factor (CRF) in the hypothalamus possess anorexigenic effects and are activated during endotoxaemia. This study investigated the effects of CCK(1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia and hypothalamic CRF neuronal activation. Male Wistar rats were pretreated with a specific CCK(1) receptor antagonist (devazepide; 1 mg kg(-1); I.P.) or vehicle; 30 min later they received LPS (100 mu g kg(-1); I.P.) or saline injection. Food intake, corticosterone responses and Fos-CRF and Fos-alpha-melanocyte-stimulating hormone (alpha-MSH) immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase immunoreactivity in the nucleus of the solitary tract (NTS) were evaluated. In comparison with saline treatment, LPS administration decreased food intake and increased plasma corticosterone levels, as well as the number of Fos-CRF and Fos-tyrosine hydroxylase double-labelled neurons in vehicle-pretreated rats; no change in Fos-alpha-MSH immunoreactivity was observed after LPS injection. In saline-treated animals, devazepide pretreatment increased food intake, but it did not modify other parameters compared with vehicle-pretreated rats. Devazepide pretreatment partly reversed LPS-induced hypophagia and Fos-CRF and brainstem neuronal activation. Devazepide did not modify the corticosterone and Fos-alpha-MSH responses in rats treated with LPS. In conclusion, the present data suggest that LPS-induced hypophagia is mediated at least in part by CCK effects, via CCK(1) receptor, on NTS and hypothalamic CRF neurons.
Resumo:
The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To investigate the relationship between NF-kappa B activation and hepatic stellate cell (HSC) apoptosis in hepatosplenic schistosomiasis, hepatic biopsies from patients with Schistosoma mansoni-induced periportal fibrosis, hepatitis C virus-induced cirrhosis, and normal liver were submitted to alpha-smooth muscle actin (alpha-SMA) and NF-kappa B p65 immunohistochemistry, as well as to NF-kappa B Southwestern histochemistry and TUNEL assay. The numbers of alpha-SMA-positive cells and NF-kappa B- and NF-kappa B p65-positive HSC nuclei were reduced in schistosomal fibrosis relative to liver cirrhosis. In addition, increased HSC NF-kappa B p65 and TUNEL labeling was observed in schistosomiasis when compared to cirrhosis. These results suggest a possible relationship between the slight activation of the NF-kappa B complex and the increase of apoptotic HSC number in schistosome-induced fibrosis, taking place to a reduced HSC number in schistosomiasis in relation to liver cirrhosis. Therefore, the NF-kappa B pathway may constitute an important down-regulatory mechanism in the pathogenesis of human schistosomiasis mansoni, although further studies are needed to refine the understanding of this process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Lipins constitute a novel family of Mg2+-dependent phosphatidate phosphatases that catalyze the dephosphorylation of phosphatidic acid to yield diacylglycerol, an important intermediate in lipid metabolism and cell signaling. Whereas a single lipin is detected in less complex organisms, in mammals there are distinct lipin isoforms and paralogs that are differentially expressed among tissues. Compatible with organism tissue complexity, we show that the single Drosophila Lpin1 ortholog (CG8709, here named DmLpin) expresses at least three isoforms (DmLpinA, DmLpinK and DmLpinJ) in a temporal and spatially regulated manner. The highest levels of lipin in the fat body, where DmLpinA and DmLpinK are expressed, correlate with the highest levels of triacylglycerol (TAG) measured in this tissue. DmLpinK is the most abundant isoform in the central nervous system, where TAG levels are significantly lower than in the fat body. In the testis, where TAG levels are even lower, DmLpinJ is the predominant isoform. Together, these data suggest that DmLpinA might be the isoform that is mainly involved in TAG production, and that DmLpinK and DmLpinJ could perform other cellular functions. In addition, we demonstrate by immunofluorescence that lipins are most strongly labeled in the perinuclear region of the fat body and ventral ganglion cells. In visceral muscles of the larval midgut and adult testis, lipins present a sarcomeric distribution. In the ovary chamber, the lipin signal is concentrated in the internal rim of the ring canal. These specific subcellular localizations of the Drosophila lipins provide the basis for future investigations on putative novel cellular functions of this protein family.
Resumo:
Purpose: To assess the association of prevalent bone marrow edema-like lesions (BMLs) and full-thickness cartilage loss with incident subchondral cyst-like lesions (SCs) in the knee to evaluate the bone contusion versus synovial fluid intrusion theories of SC formation. Materials and Methods: The Multicenter Osteoarthritis study is a longitudinal study of individuals who have or are at risk for knee osteoarthritis. The HIPAA-compliant protocol was approved by the institutional review boards of all participating centers, and written informed consent was obtained from all participants. Magnetic resonance images were acquired at baseline and 30-month follow-up and read semiquantitatively by using the Whole-Organ Magnetic Resonance Imaging Score system. The tibiofemoral and patellofemoral joints were subdivided into 14 subregions. BMLs and SCs were scored from 0 to 3. Cartilage morphology was scored from 0 to 6. The association of prevalent BMLs and full-thickness cartilage loss with incident SCs in the same subregion was assessed by using logistic regression with mutual adjustment for both predictors. Results: A total of 1283 knees were included. After adjustment for full-thickness cartilage loss, prevalent BMLs showed a strong and significant association with incident SCs in the same subregion, with an odds ratio of 12.9 (95% confidence interval [CI]: 8.9, 18.6). After adjustment for BMLs, prevalent full-thickness cartilage loss showed a significant but much less important association with incident SCs in the same subregion (odds ratio, 1.4; 95% CI: 1.0, 2.0). There was no apparent relationship between severity of full-thickness cartilage loss at baseline and incident SCs. Conclusion: Prevalent BMLs strongly predict incident SCs in the same subregion, even after adjustment for full-thickness cartilage loss, which supports the bone contusion theory of SC formation. (C) RSNA, 2010
Resumo:
For some surgical procedures in veterinary dentistry including exodontia, orthognathic surgery, orthopedic surgery, oncologic surgery, and for the placement of dental implants, it is important to know the accurate location of the neurovascular structures within the mandibular canal. The aim of this research was to determine the course of the mandibular canal in the mandible and its relationship with other anatomical structures in brachycephalic dogs using computerized tomography. Mandibles from 10 brachycephalic cadaver dogs were evaluated. Measurements were taken in relation to the lingual, vestibular alveolar crest, and ventral surfaces. These measurements indicated that the mandibular canal descends slightly from the mandibular foramen to the molar area, decreasing the distance of the mandibular canal from the mandibular ventral border The mandibular canal is slightly closer to the lingual surface than the vestibular surface except in the molar tooth region. The mandibular canal continues in a rostral direction occupying the ventral region of the mandibular body, reaching its maximum distance from the alveolar crest at the level of the first molar and fourth premolar teeth. In the third and fourth premolar tooth region, the mandibular canal maintains a similar distance between the vestibular and lingual borders; then, at the level of the second premolar tooth, the distance of the mandibular canal from the lingual and ventral border increases before its termination at the mental, foramen. The study reported here documents the feasibility of using CT to determine the location of the mandibular canal in relation to bony and dental parameters. Although the difference in mandible size of the group of brachycephalic dogs reported here resulted in broad ranges of measurements, it is clear that the MC course may vary between individual dogs. J Vet Dent 26(3); 156 - 163, 2009
Resumo:
Objective. TGIF1 homeobox gene involvement in oral cancer has not yet been investigated. This study analyzed the expression of TGIF1 transcripts and protein in oral squamous cell carcinoma (OSCC). Study design. Snap-frozen samples from 16 patients were taken from both OSCC and nontumoral adjacent epithelium (NT) for in situ hybridization (ISH). Forty-six paraffin-embedded samples of OSCC were submitted to immunohistochemistry (IHC). A descriptive analysis of the transcript signal detection was accomplished, and TGIF1 immunoexpression was carried out considering protein levels, localization, and cellular differentiation. Results. ISH reactions showed TGIF1 transcripts with a signal that was frequently intense in NT, and generally weak in OSCC, and that had stronger transcript signal in well-differentiated areas of OSCC when compared with poorly differentiated ones. IHC reactions had poorly differentiated cases associated with TGIF1 protein expression in both the nucleus and cytoplasm (P = .05, Fisher test). Conclusions. TGIF1 gain or loss of function might possibly play a role in oral cancer cell differentiation. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 218-224)
Resumo:
Ameloblastic fibrosarcoma (AFS), regarded as the malignant counterpart of the benign ameloblastic fibroma, is an extremely rare odontogenic neoplasm with only 68 cases reported in the English literature up to 2009. It is composed of a benign odontogenic epithelium, resembling that of ameloblastoma, and a malignant mesenchymal part exhibiting features of fibrosarcoma. Due to the rarity of the lesion, little is known about its molecular pathogenesis; therefore, in the current study, we sought to evaluate the immunoexpression of Ki67, proliferative cell nuclear antigen, and Bcl-2 proteins in AFS, comparing the results obtained with its benign counterpart, as well as to report a new case of this rare entity affecting a 19-year-old female patient. The results obtained revealed that all the proteins evaluated were overexpressed in the malignant mesenchymal portion of AFS if compared with ameloblastic fibroma, suggesting that nuclear proliferative factors such as Ki67 and proliferative cell nuclear antigen, in association to histopathologic features, may be useful markers for identifying the malignancy and that, despite the lack of molecular analysis in the case reported, Bcl-2 alteration may play a role in AFS pathogenesis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
c-Jun, one of the components of the transcription factor activating protein-1 (AP-1), is suggested as a factor in malignant progression of oral lesions. c-Jun and other AP-1 components relationships with human papillomavirus (HPV) infection have been investigated, but not yet focusing on oral carcinogenesis. The aim of this study was to verify whether c-Jun immunohistochemical expression is related to HPV DNA detection in oral premalignant and malignant lesions. Fifty cases diagnosed as oral leukoplakias, with different degrees of epithelial dysplasia, and as oral squamous cell carcinomas (OSCC) were submitted to immunohistochemistry to detect c-Jun and to in situ hybridization with signal amplification to assess HPV DNA. It was verified that c-Jun nuclear expression increased according to the degree of dysplasia within the lesion, with the greatest expression in OSCC. The same did not happen concerning HPV infection - a discrete proportional relation was observed in indexes found in leukoplakia with no dysplasia, leukoplakia with dysplasia and OSCC, but statistically insignificant. When separating the group of leukoplakia by degrees of dysplasia, this relation of proportion was not observed. Nevertheless, the overall prevalence of HPV infection was 24% and the high-risk HPV types were the most frequently identified, which does not allow excluding HPV as a risk factor in oral carcinogenesis. When relating c-Jun expression and HPV infection, no statistically significant relationship is observed. Results suggest then that malignant progression mediated by c-Jun is independent of the presence of HPV in oral carcinogenesis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.
Resumo:
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.