970 resultados para Morphogenetic Protein-2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Omega-3 fatty acids (n-3) may be protective of cardiovascular risk factors for vulnerable populations. The purpose of this study was to assess the association between n-3 with, C-reactive protein (CRP), and homocysteine (HCY) in Black minorities with and without type 2 diabetes. Methods: A cross-sectional study was conducted with 406 participants: Haitian Americans (HA): n=238. African Americans (AA): n=172. Participants were recruited from a randomly generated mailing lists, local diabetes educators, community health practitioners and advertisements from 2008-2010. Sociodemographics and anthropometrics were collected and used to adjust analyses. All dietary variables were collected using the semi-quantitative food frequency questionnaire (FFQ) and used to quantify vitamin components. Blood was collected to measure CVD risk factors (blood lipids, HCY, and CRP). Results: African Americans had higher waist circumferences and C-reactive protein and consumed more calories as compared to Haitian Americans. Omega 3 fatty acid intake per calorie did not differ between these ethnicities, yet African Americans with low n-3 intake were three times more likely to have high C-reactive protein as compared to their counterparts [OR=3. 32 (1. 11, 9. 26) p=0.031]. Although homocysteine did not differ by ethnicity, African Americans with low omega 3 intake (<1 g/day) were four times as likely to have high homocysteine (>12 mg/L) as compared to their counterparts, adjusting for confounders [OR=4.63 (1.59, 12.0) p=0.004]. Consumption of n-3 by diabetes status was not associated with C-reactive protein or homocysteine levels. Conclusions: Consumption of n-3 may be protective of cardiovascular risk factors such as C-r

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study examined the associations of anthropometric measures of obesity with high sensitivity C-reactive protein (hs-CRP) levels in Turkish immigrants with type 2 diabetes (T2D) living in the Netherlands. A total of 110 participants, physician-diagnosed with T2D, aged 30 years and older were recruited from multiple sources from The Hague, Netherlands. Serum hs-CRP levels were measured with immunoturbidimetric assay. Glycated hemoglobin (A1C) was determined by high-pressure liquid chromatography. Measures of obesity: body weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were determined. Statistical analysis included descriptive statistics, Pearson’s correlations and multiple linear regressions (MLR) stratified by gender. Hs-CRP was log transformed to achieve normality. Subjects with hs-CRP levels >10 mg/L (n = 17) were excluded from the analysis. Females had a higher BMI (p = 0.007), HC (p < 0.001), and WHtR (p = 0.011) as compared to males. Conversely, males had a higher weight (p = 0.007), and WHR (p < 0.001) than females. MLR showed that after controlling for covariates, log hs-CRP was positively associated with BMI (B = 0.039, SE = 0.019, β = 0.287, p < 0.05), WC (B = 0.025, SE = 0.011, β = 0.332, p < 0.05) and WHtR (B = 4.015, SE = 1.464, β = 0.376, p < 0.01) in females only. Gender-specific associations between obesity measures and hs-CRP level need to be further investigated in the Turkish immigrant population. Hs-CRP assessment may be added as a standard of care for T2D treatment within this population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acknowledgements We thank Philippe Bolifraud (INRA, France), Krawiec Angele, Sandra Grange, Laurence Puillet-Anselme (CHU Grenoble, France) and Margaret Fraser (Aberdeen, UK) for their expert technical assistance. The authors also thank the staff of the sheep sheds of Jouy-en-Josas (INRA, France). The authors would also like to thank the anonymous reviewers for their close examination of this article and their useful comments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.

We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.

In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Neutrophils play a role in the pathogenesis of asthma, chronic obstructive pulmonary disease, and pulmonary infection. Impaired neutrophil phagocytosis predicts hospital-acquired infection. Despite this, remarkably few neutrophil-specific treatments exist. 

Objectives We sought to identify novel pathways for the restoration of effective neutrophil phagocytosis and to activate such pathways effectively in neutrophils from patients with impaired neutrophil phagocytosis. 

Methods Blood neutrophils were isolated from healthy volunteers and patients with impaired neutrophil function. In healthy neutrophils phagocytic impairment was induced experimentally by using β2-agonists. Inhibitors and activators of cyclic AMP (cAMP)-dependent pathways were used to assess the influence on neutrophil phagocytosis in vitro. 

Results β2-Agonists and corticosteroids inhibited neutrophil phagocytosis. Impairment of neutrophil phagocytosis by β2-agonists was associated with significantly reduced RhoA activity. Inhibition of protein kinase A (PKA) restored phagocytosis and RhoA activity, suggesting that cAMP signals through PKA to drive phagocytic impairment. However, cAMP can signal through effectors other than PKA, such as exchange protein directly activated by cyclic AMP (EPAC). An EPAC-activating analog of cAMP (8CPT-2Me-cAMP) reversed neutrophil dysfunction induced by β2-agonists or corticosteroids but did not increase RhoA activity. 8CPT-2Me-cAMP reversed phagocytic impairment induced by Rho kinase inhibition but was ineffective in the presence of Rap-1 GTPase inhibitors. 8CPT-2Me-cAMP restored function to neutrophils from patients with known acquired impairment of neutrophil phagocytosis. 

Conclusions EPAC activation consistently reverses clinical and experimental impairment of neutrophil phagocytosis. EPAC signals through Rap-1 and bypasses RhoA. EPAC activation represents a novel potential means by which to reverse impaired neutrophil phagocytosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dose response curves to various supplements were established in two pen-feeding experiments (Exp1 and Exp2) with Bos indicus crossbred steers of two age groups (Young, 10–12 months; Old, 33–36 months) fed low-quality tropical grass hays ad libitum. Diets included supplements based on (Exp1) cottonseed meal (CSM; intake (as fed) 0–10 g/kg liveweight (W).day) and a barley mix (Bar; 0–20 g/kg W.day) and (Exp2) a molasses mix (MUP) and a Bar mix, both fed at 0–20 g/kg W.day. Urea was provided with the Bar mixes and urea/copra meal with the MUP mix. Growth rates of Young steers increased linearly with Bar and MUP supplements but asymptotically with CSM whereas those of Old steers increased asymptotically with all supplement types. With supplement intake expressed on a liveweight basis (g/kg W.day), responses were greater for both steer age groups with CSM compared with Bar (Young, P < 0.001; Old, P < 0.01) and Bar compared with MUP treatments (Young, P < 0.01; Old, P < 0.05). Furthermore, Old steers outperformed their Young counterparts with both CSM (P < 0.05) and Bar (P < 0.001) supplements fed in Exp1 and with Bar and MUP supplements (P < 0.01) fed in Exp2. When supplement intake was expressed in absolute terms (kg/day), growth responses were not different between age groups for different supplements except that Old steers had a higher daily W gain on Bar than their Young counterparts (P < 0.05). Intake of hay (W-corrected) was higher for Young compared with Old steers without supplement but was variably reduced for both steer groups with increasing supplement intake. The results of these experiments have implications for supplement formulation for steers at different stages of maturity grazing low-quality forages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity and Type 2 diabetes mellitus share a strong pro-inflammatory profile. It has been observed that iron is a risk factor in the development of type 2 diabetes. The aim of this study was to evaluate the relationship between iron nutritional status and inflammation with the risk of type 2 diabetes development in obese subjects. We studied 30 obese men with type 2 diabetes (OBDM); 30 obese subjects without diabetes (OB) and 30 healthy subjects (Cn). We isolated peripheral mononuclear cells (PMCs) and challenged them with high Fe concentrations. Total mRNA was isolated and relative abundance of TNF-αIL-6 and hepcidin were determined by qPCR. Iron status, biochemical, inflammatory and oxidative stress parameters were also characterized. OBDM and OB patients showed increased hsCRP levels compared to the Cn group. OBDM subjects showed higher levels of ferritin than the Cn group. TNF-α and IL-6 mRNA relative abundances were increased in OBDM PMCs treated with high/Fe. Hepcidin mRNA was increased with basal and high iron concentration. We found that the highest quartile of ferritin was associated with an increased risk of type 2 diabetes when it was adjusted to BMI and HOMA-IR; this association was independent of the inflammatory status. The highest level of hepcidin gene expression also showed a trend of increased risk of diabetes, however it was not significant. Levels of hsCRP over 2 mg/L showed a significant trend of increasing the risk of diabetes. In conclusion, iron may stimulate the expression of pro-inflammatory genes (TNF-α and IL-6), and both hepcidin and ferritin gene expression levels could be a risk factor for the development of type 2 diabetes. Subjects that have an increased cardiovascular risk also have a major risk to develop type 2 diabetes, which is independent of the BMI and insulin resistance state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at evaluating whether human papillomavirus (HPV) groups and E6/E7 mRNA of HPV 16, 18, 31, 33, and 45 are prognostic of cervical intraepithelial neoplasia (CIN) 2 outcome in women with a cervical smear showing a low-grade squamous intraepithelial lesion (LSIL). This cohort study included women with biopsy-confirmed CIN 2 who were followed up for 12 months, with cervical smear and colposcopy performed every three months. Women with a negative or low-risk HPV status showed 100% CIN 2 regression. The CIN 2 regression rates at the 12-month follow-up were 69.4% for women with alpha-9 HPV versus 91.7% for other HPV species or HPV-negative status (P < 0.05). For women with HPV 16, the CIN 2 regression rate at the 12-month follow-up was 61.4% versus 89.5% for other HPV types or HPV-negative status (P < 0.05). The CIN 2 regression rate was 68.3% for women who tested positive for HPV E6/E7 mRNA versus 82.0% for the negative results, but this difference was not statistically significant. The expectant management for women with biopsy-confirmed CIN 2 and previous cytological tests showing LSIL exhibited a very high rate of spontaneous regression. HPV 16 is associated with a higher CIN 2 progression rate than other HPV infections. HPV E6/E7 mRNA is not a prognostic marker of the CIN 2 clinical outcome, although this analysis cannot be considered conclusive. Given the small sample size, this study could be considered a pilot for future larger studies on the role of predictive markers of CIN 2 evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).