974 resultados para Microscopy of materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric precursor solution (Pechini method) was used to deposit LiNbO 3 thin films by spin-coating on (100) silicon substrates. X-ray diffraction data of thin films showed that the increase of oxygen flow promotes a preferred orientation of (001) LiNbO 3 planes parallel to the substrate surface. Surface roughness and grain size, observed by atomic force microscopy, change also with oxygen flow. © 2002 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very simple and robust method for ceramics grains quantitative image analysis is presented. Based on the use of optimal imaging conditions for reflective light microscopy of bulk samples, a digital image processing routine was developed for shading correction, noise suppressing and contours enhancement. Image analysis was done for grains selected according to their concavities, evaluated by perimeter ratio shape factor, to avoid consider the effects of breakouts and ghost boundaries due to ceramographic preparation limitations. As an example, the method was applied for two ceramics, to compare grain size and morphology distributions. In this case, most of artefacts introduced by ceramographic preparation could be discarded due to the use of perimeter ratio exclusion range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA-MA [poly(methyl methacrylate-comaleic anhydride)] copolymers were studied. A twin screw extruder was used for melt-blended the polymers and the injection moulding process was used to mold the samples. The main focus was on nylon 6/ ABS blends compatibilized with one MMA-MA copolymer. This copolymer has PMMA segments that appear to be miscible with the styrene-acrylonitrile (SAN) phase of ABS and the anhydride groups can react with amine end groups of the nylon 6 (Ny6) to form graft copolymers at the interface between Ny6 and ABS rich phases. Tensile and impact and morphological properties were enhanced by the incorporation of this copolymer. Transmission electron microscopy (TEM) observations revealed that the ABS domains are finely dispersed in nylon 6 matrix and led to the lowest ductile-brittle transition temperatures and highest impact properties. It can be concluded that the MMA-MA copolymer is an efficient alternative for the reactive compatibilization and can be used as a compatibilizer for nylon 6/ABS blends.© 2003 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prosthetic substructures for dental application are veneered by porcelain comprising a structure with different elastic modulus and thermal expansion coefficients layers. This structure may present residual stresses in different layers leading to crack propagation and delamination. Although veneering porcelain remains basically on same strength than standard feldspathic porcelains, new ceramic cores have been developed with higher mechanical properties overcoming metal substructures, improving esthetics and biocompatibility. The interface between the Procera dense sintered alumina core and the manufacturer recommended veneering porcelain (AllCeram-Degussa) were evaluated using SEM in coping shaped specimen simulating the standard dental preparation. There were neither crack presences at the interface nor porcelain delamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supermartensitic stainless steels (SMSSs) are a new generation of the classic 13%Cr martensitic steels, lower in carbon and with additional alloying of nickel and molybdenum offering better weldabilty and low temperature toughness. Several works have shown that plasma nitriding and nitrocarburising of stainless steels at low temperatures produces a hard surface layer which results in increased wear resistance. In this work, SMSS samples were plasma nitrided and nitrocarburised at 400, 450 and 500 °C. The plasma treated SMSS samples were characterised by means of optical microscopy, microhardness, X-ray diffraction and dry wear tests. The thickness of the layers produced increases as temperature is raised, for both plasma nitriding and nitrocarburising. X-ray diffraction demonstrates that the chromium nitride content grows with temperature for nitriding and nitrocarburising, which also showed increasing content of iron and chromium carbides with temperature. After plasma treating, it was found that the wear volume decreases for all temperatures and the wear resistance increased as the treatment temperature was raised. The main wear mechanism observed for both treated and untreated samples was grooving abrasion. © 2012 IHTSE Partnership Published by Maney on behalf of the Partnership.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a surface study of monolithic vitreous (or glassy) carbon - MVC - obtained from vitreous carbon powder. Defective MVC pieces are crushed in a ball mill and size classified by sifting. The MVC powder is mixed with furfuryl-alcohol resin and compacted in a mould using a hydraulic press. Samples with different powder granulometries are produced in this way and carbonized in a furnace under nitrogen atmosphere. Complete carbonization of the powder is achieved in only one day and losses due to breakage of the pieces is less than 5%. These results compare very favorably with respect to traditional MVC production methods where full carbonization may require up to seven days and losses due to breakage can be as high as 70%. After carbonization, samples are sanded and polished. Surface roughness and microstructure are characterized by light microscopy. Porosity is quantified from micrographs using ImageJ software and nanometric height variations are measured by atomic force microscopy. © 2012 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.