768 resultados para Matériel reconfigurable


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reverberation is caused by the reflection of the sound in adjacent surfaces close to the sound source during its propagation to the listener. The impulsive response of an environment represents its reverberation characteristics. Being dependent on the environment, reverberation takes to the listener characteristics of the space where the sound is originated and its absence does not commonly sounds like “natural”. When recording sounds, it is not always possible to have the desirable characteristics of reverberation of an environment, therefore methods for artificial reverberation have been developed, always seeking a more efficient implementations and more faithful to the real environments. This work presents an implementation in FPGAs (Field Programmable Gate Arrays ) of a classic digital reverberation audio structure, based on a proposal of Manfred Schroeder, using sets of all-pass and comb filters. The developed system exploits the use of reconfigurable hardware as a platform development and implementation of digital audio effects, focusing on the modularity and reuse characteristics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes the use of the behavioral model of the hysteresis loop of the ferroelectrics capacitor as a new alternative to the usually costly techniques in the computation of nonlinear functions in artificial neurons implemented on reconfigurable hardware platform, in this case, a FPGA device. Initially the proposal has been validated by the implementation of the boolean logic through the digital models of two artificial neurons: the Perceptron and a variation of the model Integrate and Fire Spiking Neuron, both using the model also digital of the hysteresis loop of the ferroelectric capacitor as it’s basic nonlinear unit for the calculations of the neurons outputs. Finally, it has been used the analog model of the ferroelectric capacitor with the goal of verifying it’s effectiveness and possibly the reduction of the number of necessary logic elements in the case of implementing the artificial neurons on integrated circuit. The implementations has been carried out by Simulink models and the synthesizing has been done through the DSP Builder software from Altera Corporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the crossover from and intersection between tangible and intangible heritage in the context of World Heritage. Since the start of the twenty-first century, intangible heritage has become increasingly important in international cultural heritage conservation theory and practice. In heritage literature, intangible heritage has been theorized in relation to tangible or built heritage, thereby extending the definition of cultural heritage to consider a holistic perspective. New heritage conservation instruments have been created for the protection of intangible heritage, such as most prominently the 2003 UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage. The changing conception of cultural heritage that goes beyond tangible heritage has also influenced existing instruments like the 1972 UNESCO Convention concerning the protection of the World Cultural and Natural Heritage. The thesis studies how intangible heritage has been recognized and interpreted in implementing the concept of cultural heritage as defined by the World Heritage Convention. It examines the historical development of the concept of World Cultural Heritage with the aim of tracing the construction of intangible heritage in this context. The thesis consists of six chapters. The introduction sets out the research problem and research question. In the literature review, international cultural heritage conservation is portrayed as the research context, the knowledge gap between World Heritage and intangible heritage is identified and an understanding of the research problem deepened, and methods from similar research in the subject area are presented. The methodology in the third chapter describes choices made concerning the research paradigm, research approach and strategy, the use of concepts and illustrative examples, as well as data collection and analysis methods. Knowledge is constructed using primarily a historical approach and related methods. Through the analysis of pertinent documents and heritage discourses, an understanding of the concept of intangible heritage is developed and the concept of World Cultural Heritage is investigated. In the fourth chapter, intangible heritage is studied by looking at specific cultural heritage discourses, that is, a scientific, a UNESCO, and an ICOMOS discourse. Intangible heritage is theorized in relation to the concepts of tangible heritage, heritage value, and cultural heritage. Knowledge gained in this chapter serves as a theoretical lens to trace the recognition of and tease out interpretations of intangible heritage in the context of implementing the concept of World Cultural Heritage. The results are presented in chapter five. A historical development is portrayed in five time periods and for the concepts of cultural heritage, Outstanding Universal Value, the criteria to assess World Heritage value, and authenticity. The conclusion summarizes the main outcomes, assesses the thesis’ contribution to scientific knowledge as well as its limitations, and outlines possible further research. The main results include the identification of the term intangible heritage as an indicator for a paradigm shift and a new approach to conceiving cultural heritage in international cultural heritage conservation. By focusing on processes and the living relationship between people and their environment or place, intangible heritage emphasizes the anthropological. In the context of this conception, intangible heritage takes on two meanings. First, value is attributed by people and hence, is inherently immaterial. Secondly, place is constituted of a tangible-intangible continuum in terms of attributes. A paradigm shift and increasing recognition of an anthropological approach to cultural heritage were identified for all discourses, that is, UNESCO, ICOMOS, the scientific field, and World Heritage. For World Heritage, intangible heritage was recognized indirectly in terms of historical associations during the 1970s and 1980s. The anthropological shift occurred in the early 1990s. The term intangible was introduced and the meaning of intangible heritage was extended to include cultural associations. The subsequent decade is characterized by a process of internalization and implementation of the new approach to cultural heritage. The 2003 Intangible Cultural Heritage Convention created momentum. By the early 2010s, while not explicitly recognizing the immaterial character of values, a holistic approach to cultural heritage was fully endorsed that considers the idea of intangible attributes as carriers of values. An understanding of the recognition of intangible heritage through the implementation of the World Heritage Convention and scientific research in general provide an important knowledge base for implementing the Convention in a more coherent, objective, and well-informed way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Développer de nouveaux nanomatériaux, interrupteurs et machines nanométriques sensibles à de petites variations de température spécifiques devrait être de grande utilité pour une multitude de domaines œuvrant dans la nanotechnologie. De plus, l’objectif est de convaincre le lecteur que les nanotechnologies à base d’ADN offrent d’énormes possibilités pour la surveillance de température en temps réel à l’échelle nanométrique. Dans la section Résultats, nous exploitons les propriétés de l’ADN pour créer des thermomètres versatiles, robustes et faciles à employer. En utilisant une série de nouvelles stratégies inspirées par la nature, nous sommes en mesure de créer des nanothermomètres d’ADN capables de mesurer des températures de 25 à 95°C avec une précision de <0.1°C. En créant de nouveaux complexes d’ADN multimériques, nous arrivons à développer des thermomètres ultrasensibles pouvant augmenter leur fluorescence 20 fois sur un intervalle de 7°C. En combinant plusieurs brins d’ADN avec des plages dynamiques différentes, nous pouvons former des thermomètres montrant une transition de phase linéaire sur 50°C. Finalement, la vitesse de réponse et la précision des thermomètres développés et leur réversibilité sont illustrées à l’aide d’une expérience de surveillance de température à l’intérieur d’un unique puits d’un appareil de qPCR. En conclusion, les applications potentielles de tels nanothermomètres en biologie synthétique, imagerie thermique cellulaire, nanomachines d’ADN et livraison contrôlée seront considérées.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the crossover from and intersection between tangible and intangible heritage in the context of World Heritage. Since the start of the twenty-first century, intangible heritage has become increasingly important in international cultural heritage conservation theory and practice. In heritage literature, intangible heritage has been theorized in relation to tangible or built heritage, thereby extending the definition of cultural heritage to consider a holistic perspective. New heritage conservation instruments have been created for the protection of intangible heritage, such as most prominently the 2003 UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage. The changing conception of cultural heritage that goes beyond tangible heritage has also influenced existing instruments like the 1972 UNESCO Convention concerning the protection of the World Cultural and Natural Heritage. The thesis studies how intangible heritage has been recognized and interpreted in implementing the concept of cultural heritage as defined by the World Heritage Convention. It examines the historical development of the concept of World Cultural Heritage with the aim of tracing the construction of intangible heritage in this context. The thesis consists of six chapters. The introduction sets out the research problem and research question. In the literature review, international cultural heritage conservation is portrayed as the research context, the knowledge gap between World Heritage and intangible heritage is identified and an understanding of the research problem deepened, and methods from similar research in the subject area are presented. The methodology in the third chapter describes choices made concerning the research paradigm, research approach and strategy, the use of concepts and illustrative examples, as well as data collection and analysis methods. Knowledge is constructed using primarily a historical approach and related methods. Through the analysis of pertinent documents and heritage discourses, an understanding of the concept of intangible heritage is developed and the concept of World Cultural Heritage is investigated. In the fourth chapter, intangible heritage is studied by looking at specific cultural heritage discourses, that is, a scientific, a UNESCO, and an ICOMOS discourse. Intangible heritage is theorized in relation to the concepts of tangible heritage, heritage value, and cultural heritage. Knowledge gained in this chapter serves as a theoretical lens to trace the recognition of and tease out interpretations of intangible heritage in the context of implementing the concept of World Cultural Heritage. The results are presented in chapter five. A historical development is portrayed in five time periods and for the concepts of cultural heritage, Outstanding Universal Value, the criteria to assess World Heritage value, and authenticity. The conclusion summarizes the main outcomes, assesses the thesis’ contribution to scientific knowledge as well as its limitations, and outlines possible further research. The main results include the identification of the term intangible heritage as an indicator for a paradigm shift and a new approach to conceiving cultural heritage in international cultural heritage conservation. By focusing on processes and the living relationship between people and their environment or place, intangible heritage emphasizes the anthropological. In the context of this conception, intangible heritage takes on two meanings. First, value is attributed by people and hence, is inherently immaterial. Secondly, place is constituted of a tangible-intangible continuum in terms of attributes. A paradigm shift and increasing recognition of an anthropological approach to cultural heritage were identified for all discourses, that is, UNESCO, ICOMOS, the scientific field, and World Heritage. For World Heritage, intangible heritage was recognized indirectly in terms of historical associations during the 1970s and 1980s. The anthropological shift occurred in the early 1990s. The term intangible was introduced and the meaning of intangible heritage was extended to include cultural associations. The subsequent decade is characterized by a process of internalization and implementation of the new approach to cultural heritage. The 2003 Intangible Cultural Heritage Convention created momentum. By the early 2010s, while not explicitly recognizing the immaterial character of values, a holistic approach to cultural heritage was fully endorsed that considers the idea of intangible attributes as carriers of values. An understanding of the recognition of intangible heritage through the implementation of the World Heritage Convention and scientific research in general provide an important knowledge base for implementing the Convention in a more coherent, objective, and well-informed way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Développer de nouveaux nanomatériaux, interrupteurs et machines nanométriques sensibles à de petites variations de température spécifiques devrait être de grande utilité pour une multitude de domaines œuvrant dans la nanotechnologie. De plus, l’objectif est de convaincre le lecteur que les nanotechnologies à base d’ADN offrent d’énormes possibilités pour la surveillance de température en temps réel à l’échelle nanométrique. Dans la section Résultats, nous exploitons les propriétés de l’ADN pour créer des thermomètres versatiles, robustes et faciles à employer. En utilisant une série de nouvelles stratégies inspirées par la nature, nous sommes en mesure de créer des nanothermomètres d’ADN capables de mesurer des températures de 25 à 95°C avec une précision de <0.1°C. En créant de nouveaux complexes d’ADN multimériques, nous arrivons à développer des thermomètres ultrasensibles pouvant augmenter leur fluorescence 20 fois sur un intervalle de 7°C. En combinant plusieurs brins d’ADN avec des plages dynamiques différentes, nous pouvons former des thermomètres montrant une transition de phase linéaire sur 50°C. Finalement, la vitesse de réponse et la précision des thermomètres développés et leur réversibilité sont illustrées à l’aide d’une expérience de surveillance de température à l’intérieur d’un unique puits d’un appareil de qPCR. En conclusion, les applications potentielles de tels nanothermomètres en biologie synthétique, imagerie thermique cellulaire, nanomachines d’ADN et livraison contrôlée seront considérées.