905 resultados para Mangove ecosystem
Resumo:
Major changes to rainfall regimes are predicted for the future but the effect of such changes on terrestrial ecosystem function is largely unknown. We created a rainfall manipulation experiment to investigate the effects of extreme changes in rainfall regimes on ecosystem functioning in a grassland system. We applied two rainfall regimes; a prolonged drought treatment (30 % reduction over spring and summer) and drought/downpour treatment (long periods of no rainfall interspersed with downpours), with an ambient control. Both rainfall manipulations included increased winter rainfall. We measured plant community composition, CO2 fluxes and soil nutrient availability. Plant species richness and cover were lower in the drought/downpour treatment, and showed little recovery after the treatment ceased. Ecosystem processes were less affected, possibly due to winter rainfall additions buffering reduced summer rainfall, which saw relatively small soil moisture changes. However, soil extractable P and ecosystem respiration were significantly higher in rainfall change treatments than in the control. This grassland appears fairly resistant, in the short term, to even the more extreme rainfall changes that are predicted for the region, although prolonged study is needed to measure longer-term impacts. Differences in ecosystem responses between the two treatments emphasise the variety of ecosystem responses to changes in both the size and frequency of rainfall events. Given that model predictions are inconsistent there is therefore a need to assess ecosystem function under a range of potential climate change scenarios.
Resumo:
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding-and in management decisions-about how biodiversity is related to the provision of multiple ecosystem services.
Resumo:
Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analysed how woody vegetation of differing cover affects plant diversity (richness and evenness) and the surrogates of multiple ecosystem processes (multifunctionality) in global drylands, and how these change with aridity. Location Two hundred and twenty-four dryland sites from all continents except Antarctica, widely differing in their environmental conditions (from arid to dry-subhumid sites) and relative woody cover (from 0 to 100). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 soil variables related to fertility and the build-up of nutrient pools. These variables are critical for maintaining ecosystem functioning in drylands. Results Species richness and ecosystem multifunctionality were strongly related to woody vegetation, with both variables peaking at a relative woody cover (RWC) of 41–60. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC–diversity and multifunctionality relationships under semi-arid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive in wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of levels of woody cover and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in the current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.
Resumo:
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Resumo:
Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.
Resumo:
Since the origin of early Homo species during the Late Pliocene, interactions of humans with scavenging birds and mammals have changed in form through shifting ecological scenarios. How humans procured meat during the Quaternary Period changed from confrontational scavenging to hunting; shepherding of wild animals; and, eventually, intensive husbandry of domesticated animals. As humans evolved from carcass consumers to carcass providers, the overall relationship between humans and scavengers shifted from competition to facilitation. These changing interactions have translated into shifting provisioning (by signaling carcass location), regulating (e.g., by removing animal debris and controlling infectious diseases), and cultural ecosystem services (e.g., by favoring human language and social cooperation skills or, more recently, by enhancing ecotourism) provided by scavenging vertebrates. The continued survival of vultures and large mammalian scavengers alongside humans is now severely in jeopardy, threatening the loss of the numerous ecosystem services from which contemporary and future humans could benefit.
Resumo:
Since European settlement, there has been a dramatic increase in the density, cover and distribution of woody plants in former grassland and open woodland. There is a widespread belief that shrub encroachment is synonymous with declines in ecosystem functions, and often it is associated with landscape degradation or desertification. Indeed, this decline in ecosystem functioning is considered to be driven largely by the presence of the shrubs themselves. This prevailing paradigm has been the basis for an extensive program of shrub removal, based on the view that it is necessary to reinstate the original open woodland or grassland structure from which shrublands are thought to have been derived. We review existing scientific evidence, particularly focussed on eastern Australia, to question the notion that shrub encroachment leads to declines in ecosystem functions. We then summarise this scientific evidence into two conceptual models aimed at optimising landscape management to maximise the services provided by shrub-encroached areas. The first model seeks to reconcile the apparent conflicts between the patch- and landscape-level effects of shrubs. The second model identifies the ecosystem services derived from different stages of shrub encroachment. We also examined six ecosystem services provided by shrublands (biodiversity, soil C, hydrology, nutrient provision, grass growth and soil fertility) by using published and unpublished data. We demonstrated the following: (1) shrub effects on ecosystems are strongly scale-, species- and environment-dependent and, therefore, no standardised management should be applied to every case; (2) overgrazing dampens the generally positive effect of shrubs, leading to the misleading relationship between encroachment and degradation; (3) woody encroachment per se does not hinder any of the functions or services described above, rather it enhances many of them; (4) no single shrub-encroachment state (including grasslands without shrubs) will maximise all services; rather, the provision of ecosystem goods and services by shrublands requires a mixture of different states; and (5) there has been little rigorous assessment of the long-term effectiveness of removal and no evidence that this improves land condition in most cases. Our review provides the basis for an improved, scientifically based understanding and management of shrublands, so as to balance the competing goals of providing functional habitats, maintaining soil processes and sustaining pastoral livelihoods.
Resumo:
Software developers are often unsure of the exact name of the method they need to use to invoke the desired behavior in a given context. This results in a process of searching for the correct method name in documentation, which can be lengthy and distracting to the developer. We can decrease the method search time by enhancing the documentation of a class with the most frequently used methods. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem - written in the same language and sharing dependencies. We implemented a proof of concept of the approach for Pharo Smalltalk and Java. In Pharo Smalltalk, methods are commonly searched for using a code browser tool called "Nautilus", and in Java using a web browser displaying HTML based documentation - Javadoc. We developed plugins for both browsers and gathered method usage data from open source projects, in order to increase developer productivity by reducing method search time. A small initial evaluation has been conducted showing promising results in improving developer productivity.
Resumo:
Dynamically typed languages lack information about the types of variables in the source code. Developers care about this information as it supports program comprehension. Ba- sic type inference techniques are helpful, but may yield many false positives or negatives. We propose to mine information from the software ecosys- tem on how frequently given types are inferred unambigu- ously to improve the quality of type inference for a single system. This paper presents an approach to augment existing type inference techniques by supplementing the informa- tion available in the source code of a project with data from other projects written in the same language. For all available projects, we track how often messages are sent to instance variables throughout the source code. Predictions for the type of a variable are made based on the messages sent to it. The evaluation of a proof-of-concept prototype shows that this approach works well for types that are sufficiently popular, like those from the standard librarie, and tends to create false positives for unpopular or domain specific types. The false positives are, in most cases, fairly easily identifiable. Also, the evaluation data shows a substantial increase in the number of correctly inferred types when compared to the non-augmented type inference.
Resumo:
– Swiss forests experience strong impacts under the CH2011 scenarios, partly even for the low greenhouse gas scenario RCP3PD. Negative impacts prevail in low-elevation forests, whereas mostly positive impacts are expected in high-elevation forests. – Major changes in the distribution of the two most important tree species, Norway spruce and European beech, are expected. Growth conditions for spruce improve in a broad range of scenarios at presently cool high-elevation sites with plentiful precipitation, but in the case of strong warming (A1B and A2) spruce and beech are at risk in large parts of the Swiss Plateau. – High elevation forests that are temperature-limited will show little change in species composition but an increase in biomass. In contrast, forests at low elevations in warm-dry inner-Alpine valleys are sensitive to even moderate warming and may no longer sustain current biomass and species. – Timber production potential, carbon storage, and protection from avalanches and rockfall react differently to climate change, with an overall tendency to deteriorate at low elevations, and improve at high elevations. – Climate change will affect forests also indirectly, e.g., by increasing the risk of infestation by spruce bark beetles, which will profit from an extended flight period and will produce more generations per year.
Resumo:
Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.