776 resultados para Machine learning methods
Resumo:
Tässä pro gradu -tutkielmassa tarkastellaan osaamisen johtamista Lappeenrannan seurakuntayhtymässä kirkkoherrojen näkökulmasta. Tutkimuksen tavoitteena on selvittää, miten kirkkoherrojen osaamisen johtamista voidaan kehittää. Tutkielmassa tarkastellaan kirkkoherrojen roolia ja tehtäviä sekä käytössä olevia osaamisen kehittämisen menetelmiä. Lisäksi paneudutaan osaamisen johtamisen haasteisiin ja hengellisen työn erityispiirteisiin. Tutkimus toteutettiin kvalitatiivisena tapaustutkimuksena. Tutkimuksen empiirinen aineisto kerättiin haastattelemalla Lappeenrannan seurakuntayhtymän kaikkia viittä kirkkoherraa. Tutkimuksen tulosten perusteella voidaan havaita, että osaamisen johtaminen ei seurakuntayhtymässä ole kovin suunnitelmallista tai pitkäjänteistä. Tulevaisuuden haasteina nähdään etenkin kirkon yhteiskunnallisen aseman muuttuminen ja jäsenmäärän väheneminen. Suurimpana osaamisen johtamiseen liittyvänä haasteena kirkkoherrat kokevat ajan puutteen. Kirkkoherrojen näkemyksissä omasta roolistaan osaamisen johtamisessa korostuvat kokonaisuuksien hallinta, yleisten suuntaviivojen määrittely ja yhteisen suunnan selkiyttäminen. Osaamisen kehittämisen menetelmiä on käytössä monia, mutta pääpaino on keskusteluissa ja palavereissa sekä koulutuksissa. Hengellisen työn erityispiirteinä nähdään kirkon erityinen arvomaailma sekä uskon henkilökohtainen ja intiimi olemus. Osaaminen tulisi seurakuntayhtymässä ottaa tietoiseksi johtamisen kohteeksi. Kirkkoherrat voivat kehittää omaa osaamisen johtamistaan parantamalla tietoisuutta esimiehen eri rooleista ja tehtäväkentistä. Erityisesti yksilöiden oppimisen tukemiseen ja oppimista edistävän ilmapiirin luomiseen tulisi tulevaisuudessa kiinnittää huomiota. Osaamisen kehittämisen menetelmistä suositeltavia ovat etenkin erilaiset työssä oppimisen keinot.
Resumo:
Tämä tutkimus osallistuu organisaation oppimiseen liittyvästä osaamisen jalkauttamisesta käytävään akateemiseen ja käytännön johtamisen keskusteluun. Tutkimuksen tavoitteena on kuvata ja ymmärtää, miten kranaatinheitinkouluttajien AHJO-ammunnanhallintajärjestelmän käytön osaaminen rakentuu Puolustus-voimissa. Tutkimuskysymystä lähestytään analysoimalla viittä asiantuntijahaastat-telua ja 58 kirjallista tutkimuskyselyvastausta. Tutkimuksen mukaan AHJO-osaaminen rakentuu yksilötasolla formaalien, non-formaalien ja informaalien oppimismenetelmien vuorovaikutuksessa. Peruskoulutuksen aikainen formaali opetus vaikuttaa korostuvan perusosaamisen rakentamisessa, kun taas syvemmän osaamisen kehittämisen edellytyksenä vaikuttaa olevan informaali harjaantuminen. Non-formaalin täydennyskoulutuksen merkitys korostuu vähemmän harjaantuneen henkilöstön osaamisen rakentamisessa sekä järjestelmän käyttöönottokynnyksen madaltamisessa.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.
Resumo:
Tämän kandidaatintyön tavoitteena on käsitellä tekoälyjärjestelmien käyttöä liiketoiminnassa. Tekoälyä on tutkittu pitkään, mutta sen soveltaminen liiketoimintaan on suhteellisen uutta. Työssä esitellään IBM Watson Analytics- tekoälyjärjestelmän käyttöä. Tämän esittelyn kautta on tarkoitus näyttää, kuinka helposti tekoälyjärjestelmät todellisuudessa ovat hyödynnettävissä. Kirjallisuudesta löytyvien esimerkkien kautta työssä esitellään, minkälaisia järjestelmiä tällä hetkellä käytetään, ja millaisiin tarkoituksiin ne on luotu. Tekoälyjärjestelmien monimuotoisuuden vuoksi niitä käytetäänkin laajalti erilaisiin sovelluksiin. Kirjallisuudesta huomataan, että tekoälyjärjestelmät koostuvat usein monesta eri tavasta toteuttaa tekoälyä. Kirjallisuuden ja tekoälyn toteutuksen teorian pohjalta huomataan myös, että tekoälyjärjestelmät toimivat useimmiten erilaisissa päätöksentekoa tukevissa tai helpottavissa tehtävissä. Työssä esitetään myös IBM Watson Analyticsin ja avoimen datan avulla, kuinka helposti tekoälyjärjestelmiä pystytään hyödyntämään. Työssä näytetään tämän esimerkin kautta, miten ja minkä tyyppistä liiketoimintaa tukevaa informaatiota tekoälyjärjestelmä pystyy helposti tuottamaan.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal
Resumo:
Le rôle important joué par la mitochondrie dans la cellule eucaryote est admis depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les processus biologiques qui sy déroulent restent encore largement inconnus. Deux facteurs principaux permettent dexpliquer pourquoi létude des mitochondries progresse si lentement : le manque defficacité des méthodes didentification des protéines mitochondriales et le manque de précision dans lannotation de ces protéines. En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui permet de prédire avec succès les protéines mitochondriales à partir des séquences génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme source dénergie et de carbone. De plus, nous avons étudié le composant clef de la voie de bêta-oxydation mitochondriale, lacyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la classification en sous-familles et linférence phylogénétique. Notre étude suggère que les gènes ACAD font partie dune ancienne famille qui a adopté des stratégies évolutionnaires innovatrices afin de générer un large ensemble denzymes susceptibles dutiliser la plupart des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de protéines mitochondriales à partir de données autres que les séquences génomiques, nous avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout autre outil de prédiction connu. En plus de fournir deux nouveaux outils de prédiction de la localisation subcellulaire utilisant différents types de données, nos travaux démontrent comment lassociation de la prédiction de la localisation subcellulaire à dautres méthodes danalyse in silico permet daméliorer la connaissance des protéines mitochondriales. De plus, ces travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui présente un grand potentiel pour faire progresser nos connaissances des métabolismes mitochondriaux.
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
Ce mémoire est composé de trois articles qui s’unissent sous le thème de la recommandation musicale à grande échelle. Nous présentons d’abord une méthode pour effectuer des recommandations musicales en récoltant des étiquettes (tags) décrivant les items et en utilisant cette aura textuelle pour déterminer leur similarité. En plus d’effectuer des recommandations qui sont transparentes et personnalisables, notre méthode, basée sur le contenu, n’est pas victime des problèmes dont souffrent les systèmes de filtrage collaboratif, comme le problème du démarrage à froid (cold start problem). Nous présentons ensuite un algorithme d’apprentissage automatique qui applique des étiquettes à des chansons à partir d’attributs extraits de leur fichier audio. L’ensemble de données que nous utilisons est construit à partir d’une très grande quantité de données sociales provenant du site Last.fm. Nous présentons finalement un algorithme de génération automatique de liste d’écoute personnalisable qui apprend un espace de similarité musical à partir d’attributs audio extraits de chansons jouées dans des listes d’écoute de stations de radio commerciale. En plus d’utiliser cet espace de similarité, notre système prend aussi en compte un nuage d’étiquettes que l’utilisateur est en mesure de manipuler, ce qui lui permet de décrire de manière abstraite la sorte de musique qu’il désire écouter.
Resumo:
L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées).
Resumo:
Ce mémoire traite d'abord du problème de la modélisation de l'interprétation des pianistes à l'aide de l'apprentissage machine. Il s'occupe ensuite de présenter de nouveaux modèles temporels qui utilisent des auto-encodeurs pour améliorer l'apprentissage de séquences. Dans un premier temps, nous présentons le travail préalablement fait dans le domaine de la modélisation de l'expressivité musicale, notamment les modèles statistiques du professeur Widmer. Nous parlons ensuite de notre ensemble de données, unique au monde, qu'il a été nécessaire de créer pour accomplir notre tâche. Cet ensemble est composé de 13 pianistes différents enregistrés sur le fameux piano Bösendorfer 290SE. Enfin, nous expliquons en détail les résultats de l'apprentissage de réseaux de neurones et de réseaux de neurones récurrents. Ceux-ci sont appliqués sur les données mentionnées pour apprendre les variations expressives propres à un style de musique. Dans un deuxième temps, ce mémoire aborde la découverte de modèles statistiques expérimentaux qui impliquent l'utilisation d'auto-encodeurs sur des réseaux de neurones récurrents. Pour pouvoir tester la limite de leur capacité d'apprentissage, nous utilisons deux ensembles de données artificielles développées à l'Université de Toronto.
Resumo:
Récemment, nous avons pu observer un intérêt grandissant pour l'application de l'analogie formelle à l'analyse morphologique. L'intérêt premier de ce concept repose sur ses parallèles avec le processus mental impliqué dans la création de nouveaux termes basée sur les relations morphologiques préexistantes de la langue. Toutefois, l'utilisation de ce concept reste tout de même marginale due notamment à son coût de calcul élevé.Dans ce document, nous présenterons le système à base de graphe Moranapho fondé sur l'analogie formelle. Nous démontrerons par notre participation au Morpho Challenge 2009 (Kurimo:10) et nos expériences subséquentes, que la qualité des analyses obtenues par ce système rivalise avec l'état de l'art. Nous analyserons aussi l'influence de certaines de ses composantes sur la qualité des analyses morphologiques produites. Nous appuierons les conclusions tirées de nos analyses sur des théories bien établies dans le domaine de la linguistique. Ceci nous permet donc de fournir certaines prédictions sur les succès et les échecs de notre système, lorsqu'appliqué à d'autres langues que celles testées au cours de nos expériences.