936 resultados para MITOCHONDRIAL MEMBRANE POTENTIAL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fertilization in mammals requires the successful completion of a sequence of steps, starting with the transport of gametes in the reproductive tract and ending with sperm-egg membrane fusion to produce a zygote. Although some integrin subunits are known to be associated with the plasma membrane of some mammalian oocytes and spermatozoa, the presence of α6 integrin on bovine oocytes with intact zona pellucida has not been reported. The present study was undertaken to evaluate the expression of α6 integrin subunit in bovine oocyte and to determine if in vitro binding to the zona pellucida and fertilization were affected by treating oocytes with α6 integrin subunit antibody. The α6 integrin subunit was identified on the bovine oocyte by immunocytochemistry. In vitro fertilization was significantly decreased when in vitro matured bovine oocytes were pre-incubated with α6 integrin subunit antibody at concentration 5 and 20 μg/mL, and spermoocyte binding increased. These studies demonstrated the presence of α6 integrin subunit on bovine oocyte, and its importance in fertilization and polyspermy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was to compare the potential of bioactive glass particles of different size ranges to affect bone formation in periodontal defects, using the guided tissue regeneration model in dogs. Methods: In six dogs, 2-wall intrabony periodontal defects were surgically created and chronified on the mesial surfaces of mandibular third premolars and first molars bilaterally. After 1 month, each defect was randomly assigned to treatment with bioabsorbable membrane in association with bioactive glass with particle sizes between 300 and 355 mu m (group 1) or between 90 and 710 mu m (group 2), membrane alone (group 3), or negative control (group 4). The dogs were sacrificed 12 weeks after surgeries, and histomorphometric measurements were made of the areas of newly formed bone, new mineralized bone, and bioactive glass particle remnants. Results: With regard to the area of bioactive glass particle remnants, there was a statistically significant difference between groups 1 and 2, favoring group 1. There were greater areas of mineralized bone in groups 1 and 2 compared to groups 3 and 4 (P<0.05). Conclusion: The bioactive glass particles of small size range underwent faster resorption and substitution by new bone than the larger particles, and the use of bioactive glass particles favored the formation of mineralized bone. J Periodontol 2009;80:808-815.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success of semen cryopreservation is influenced by several factors, such as freezing curves and cryoprotectants. These two factors are of special interest once they may lead to many important physical-chemical changes resulting in different degrees of damage in spermatozoa structure. This experiment was designed to compare the effect of bull semen cryopreservation using two freezing techniques: conventional (CT cooling rate of -0.55 degrees C min-1 and freezing rate of -19.1 degrees C min-1) and automated (AT cooling rate of -0.23 degrees C min-1 and freezing rate of -15 degrees C min-1), performed with different curves, and with three cryoprotectants (glycerol, ethylene glycol and dimethyl formamide) on bovine sperm motility and integrity of plasma, acrosomal and mitochondrial membranes. These variables were simultaneously evaluated using the fluorescence probes propidium iodide, fluorescein-conjugated Pisum sativum agglutinin and MitoTracker Green FM. The effects of freezing techniques, as well as of different cryoprotectants were analysed by the analysis of variance. The means were compared by Fishers test. There were no significant differences between freezing techniques (P > 0.05). Glycerol showed higher percentages of motility, vigour and integrity of plasma, acrosomal and mitochondrial membranes than other two cryoprotectants (P < 0.05). Ethylene glycol preserved higher motility and integrity of plasma and mitochondrial membranes than dimethyl formamide (P < 0.05). Sperm motility with glycerol was 30.67 +/- 1.41% and 30.50 +/- 1.06%, with ethylene glycol was 21.17 +/- 1.66% and 21.67 +/- 1.13% and with dimethyl formamide was 8.33 +/- 0.65% and 9.17 +/- 0.72% to CT and AT curves, respectively. The percentage of spermatozoa with simultaneously intact plasma membrane, intact acrosome and mitochondrial function (IPIAH) was 14.82 +/- 1.49% (CT) and 15.83 +/- 1.26% (AT) to glycerol, 9.20 +/- 1.31% (CT) and 9.92 +/- 1.29% (AT) to ethylene glycol 4.65 +/- 0.93% (CT) and 5.17 +/- 0.87% (AT) to dimethyl formamide. Glycerol provided the best results, although nearly 85% of spermatozoa showed some degree of injury in their membranes, suggesting that further studies are required to improve the results of cryopreservation of bovine semen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dystrophin gene, located at Xp21, codifies dystrophin, which is part of a protein complex responsible for the membrane stability of muscle cells. Its absence on muscle causes Duchenne Muscular Dystrophy (DMD), a severe disorder, while a defect of muscle dystrophin causes Becker Muscular Dystrophy (DMB), a milder disease. The replacement of the defective muscle through stem cells transplantation is a possible future treatment for these patients. Our objective was to analyze the potential of CD34+ stem cells from umbilical cord blood to differentiate in muscle cells and express dystrophin, in vitro. Protein expression was analyzed by Immunofluorescence, Western Blotting (WB) and Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR). CD34+ stem cells and myoblasts from a DMD affected patient started to fuse with muscle cells immediately after co-cultures establishment. Differentiation in mature myotubes was observed after 15 days and dystrophin-positive regions were detected through Immunofluorescence analysis. However, WB or RT-PCR analysis did not detect the presence of normal dystrophin in co-cultures of CD34+ and DMD or DMB affected patients' muscle cells. In contrast, some CD34+ stem cells differentiated in dystrophin producers' muscle cells, what was observed by WB, reinforcing that this progenitor cell has the potential to originate muscle dystrophin in vitro, and not just in vivo like reported before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration aswell as biomass inmarine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude,we investigated the power of biomass and potential respiration in predicting respiration.We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in μlO2h−1 (R=0.924Φ+0.062, r2=0.976), but biomass (as mg dry mass) could not (R=27.02DM+8.857, r2=0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source.