989 resultados para MASSES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.48 Jupiter masses and 1.55 Jupiter radii. It is in a 3.4-day orbit around a metal-poor, late-F-type, V = 11.7 dwarf star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. Based in part on observations made with the HARPS spectrograph on the 3.6-m ESO telescope (proposal 085.C-0393) and with the CORALIE spectrograph and the Euler camera on the 1.2-m Euler Swiss telescope, both at the ESO La Silla Observatory, Chile.The photometric time-series and radial-velocity data used in this work are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A60

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L?similar to 4.54 +/- 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M?. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 +/- 1.3) x 10-3 M? from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L?similar to 4.35 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (78 M?).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Roche tomograms of the secondary star in the dwarf nova system RU Pegasi derived from blue and red arm ISIS data taken on the 4.2-m William Herschel Telescope. We have applied the entropy landscape technique to determine the system parameters and obtained component masses of M1 = 1.06 Msun, M2 = 0.96 Msun, an orbital inclination angle of i = 43 degrees, and an optimal systemic velocity of gamma = 7 km/s. These are in good agreement with previously published values. Our Roche tomograms of the secondary star show prominent irradiation of the inner Lagrangian point due to illumination by the disc and/or bright spot, which may have been enhanced as RU Peg was in outburst at the time of our observations.We find that this irradiation pattern is axi-symmetric and confined to regions of the star which have a direct view of the accretion regions. This is in contrast to previous attempts to map RU Peg which suggested that the irradiation pattern was non-symmetric and extended beyond the terminator. We also detect additional inhomogeneities in the surface distribution of stellar atomic absorption that we ascribe to the presence of a large star-spot. This spot is centred at a latitude of about 82 degrees and covers approximately 4 per cent of the total surface area of the secondary. In keeping with the high latitude spots mapped on the cataclysmic variables AE Aqr and BV Cen, the spot on RU Peg also appears slightly shifted towards the trailing hemisphere of the star. Finally, we speculate that early mapping attempts which indicated non-symmetric irradiation patterns which extended beyond the terminator of CV donors could possibly be explained by a superposition of symmetric heating and a large spot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of actin filaments in the spermatogenic cells of Fasciola hepatica was determined using a fluorescent derivative of phalloidin. Actin was localised primarily in the region of separation of a secondary spermatogonium from a primary spermatogonium, in the inner faces at the centre of four-cell clusters of tertiary spermatogonia and in the cytophore region of spermatocyte and spermatid rosettes. The effect of the microfilament inhibitor cytochalasin B (100-mu-g/ml) on the ultrastructure of the spermatogenic cells was determined in vitro by transmission electron microscopy using tissue-slice material. Cytochalasin B treatment led to the formation of bi- and multinucleate cells, whose frequency increased with progressively longer incubation periods. Few typical rosettes of spermatocyte and spermatid cells were evident from 6 h onwards, being replaced by syncytial masses of cells. Spermatozoon formation became abnormal in the longer treatment periods, the spermatozoa containing variable numbers of axonemes and an altered distribution of cortical microtubules. Multiple axonemes were observed in the cytoplasm of spermatid cells. The results are discussed in relation to the established role of actin in the cytokinesis phase of cell division and to the effects of cytochalasin B on other tissues and organ systems within the fluke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report our attempts to locate the progenitor of the peculiar Type Ic SN 2007gr in Hubble Space Telescope (HST) preexplosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini ( North) Telescope with the preexplosion HST WFPC2 images, we identify the supernova (SN) position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position, we show that it lies on the edge of a bright source 134 +/- 23 mas (6.9 pc) from its nominal center. On the basis of its luminosity, we suggest that this object is possibly an unresolved, compact, and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favors a single bright star. We find two solutions for the age of this assumed cluster: 7 -/+ 0.5 Myr and 20 - 30 Myr, with turnoff masses of 28 +/- M-circle dot and 12 - 9 M-circle dot, respectively. Preexplosion ground-based K- band images marginally favor the younger cluster 4 age/higher turnoff mass. Assuming the SN progenitor was a cluster member, the turnoff mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine whether the progenitor was indeed part of a cluster and, if so, allow an age estimate to within similar to 2 Myr, thereby favoring either a high-mass single star or lower-mass interacting binary progenitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method ( Mokiem et al. 2005), which combines the stellar atmosphere code fastwind ( Puls et al. 2005) with the genetic algorithm based optimisation routine PIKAIA ( Charbonneau 1995). We derive an age of 7.0 +/- 1.0 and 3.0 +/- 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be similar to 49- 54 kK ( compared to similar to 45- 46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. ( 2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z similar to 1/2 Z(circle dot) environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D-mom as a function of luminosity with predictions for LMC metallicities by Vink et al. ( 2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion Hubble Space Telescope (HST) images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two weeks after explosion. We compare SN 2004A to the similar Type II-P SN 1999em and estimate an explosion epoch of 2004 January 6. We also calculate three new distances to NGC 6207 of 21.0 +/- 4.3, 21.4 +/- 3.5 and 25.1 +/- 1.7 Mpc. The former was calculated using the Standard Candle Method (SCM) for SNe II-P, and the latter two from the brightest supergiants method (BSM). We combine these three distances with existing kinematic distances, to derive a mean value of 20.3 +/- 3.4 Mpc. Using this distance, we estimate that the ejected nickel mass in the explosion is 0.046(-0.017)(+0.031) M-circle dot. The progenitor of SN 2004A is identified in pre-explosion WFPC2 F814W images with a magnitude of m(F814W) = 24.3 +/- 0.3, but is below the detection limit of the F606W images. We show that this was likely a red supergiant (RSG) with a mass of 9(-2)(+3) M-circle dot. The object is detected at 4.7 sigma above the background noise. Even if this detection is spurious, the 5 sigma upper limit would give a robust upper mass limit of 12M(circle dot) for a RSG progenitor. These initial masses are very similar to those of two previously identified RSG progenitors of the Type II-P SNe 2004gd (8(-2)(+4) M circle dot) and 2005cs (9(-2)(+3) M-circle dot).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short- duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M-circle dot. This lower bound drops to 8% for MACHOs with masses similar to 0.01 M-circle dot. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32' away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supernova SN 2001du was discovered in the galaxy NGC 1365 at a distance of 19 +/- 2 Mpc, and is a core-collapse event of Type II-P. Images of this galaxy, of moderate depth, have been taken with the Hubble Space Telescope approximately 6.6 yr before discovery and include the supernova position on the WFPC2 field of view. We have observed the supernova with the WFPC2 to allow accurate differential astrometry of SN 2001du on the pre-explosion frames. As a core-collapse event it is expected that the progenitor was a massive, luminous star. There is a marginal detection (3sigma) of a source close to the supernova position on the pre-discovery V -band frame, but it is not precisely coincident and we do not believe it to be a robust detection of a point source. We conclude that there is no stellar progenitor at the supernova position and derive sensitivity limits of the pre-discovery images that provide an upper mass limit for the progenitor star. We estimate that the progenitor had a mass of less than 15 M-circle dot . We revisit two other nearby Type II-P supernovae that have high-quality pre-explosion images, and refine the upper mass limits for the progenitor stars. Using a new distance determination for SN 1999gi from the expanding photosphere method, we revise the upper mass limit to 12 M-circle dot . We present new HST images of the site of SN 1999em, which validate the use of lower spatial resolution ground-based images in the progenitor studies and use a new Cepheid distance to the galaxy to measure an upper mass limit of 15 M-circle dot for that progenitor. Finally we compile all the direct information available for the progenitors of eight nearby core-collapse supernovae and compare their mass estimates. These are compared with the latest stellar evolutionary models of pre-supernova evolution which have attempted to relate metallicity and mass to the supernovae type. Although this is statistically limited at present, reasonable agreement is already found for the lower-mass events (generally the II-P), but some discrepancies appear at higher masses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masses and progenitor evolutionary states of Type II supernovae remain almost unconstrained by direct observations. Only one robust observation of a progenitor (SN 1987A) and one plausible observation (SN 1993J) are available. Neither matched theoretical predictions, and in this Letter we report limits on a third progenitor (SN 1999gi). The Hubble Space Telescope (HST) has imaged the site of the Type II-P supernova SN 1999gi with the Wide Field Planetary Camera 2 (WFPC2) in two filters (F606W and F300W) prior to explosion. The distance to the host galaxy (NGC 3184) of 7.9 Mpc means that the most luminous, massive stars are resolved as single objects in the archive images. The supernova occurred in a resolved, young OB association 2.3 kpc from the center of NGC 3184 with an association age of about 4 Myr. Follow-up images of SN 1999gi with WFPC2 taken 14 months after discovery determine the precise position of the supernova on the preexplosion frames. An upper limit of the absolute magnitude of the progenitor is estimated (M-v greater than or equal to -5.1). By comparison with stellar evolutionary tracks, this can be interpreted as a stellar mass, and we determine an upper mass limit of 9(-2)(+3) M.. We discuss the possibility of determining the masses or mass limits for numerous nearby core-collapse supernovae using the HST archive enhanced by our current SNAP program.