954 resultados para MANGANESE OXIDES
Resumo:
High-resolution down-core analyses of the solid phase content of total barium (Batot) and total organic carbon (TOC) back to 25 kyr B.P. were performed on a gravity core from the upper continental slope off Cape Yubi (Morocco). The observed discrepancy between the two potential paleoproductivity proxies, Batot and TOC, initiated supplementary examinations of the pore water, the geochemistry of the clay fraction, X-ray diffraction analyses, and the application of a sequential Ba extraction method of selected samples. Additionally, we analyzed down-core samples of the planktonic foraminifera Turborotalita quinqueloba and Globorotalia inflata for their Ba/Ca ratios. These analyses, which were performed for the first time on these species, were used to reconstruct past oceanic Ba concentrations. We suggest that in the study area, which is characterized by high accumulation rates, the preserved TOC content is a valuable proxy for past primary productivity, whereas the solid phase Batot contents appear to be affected by other mechanisms and factors. Peaks of total barium content in the clay fraction and of Ba/Ca ratios in the planktonic foraminifera shells found during the Younger Dryas and the Heinrich 1 event are likely to result from increased meltwater influx into the northern North Atlantic. We suggest that Ba-enriched meltwater was transmitted by the eastern boundary current system from higher latitudes to the region of the Canary Islands. Total barium contents of the clay fraction (Batot,clay) and Ba/Ca in planktonic foraminifera shells seem to be reliable proxies for this discharge of meltwater.
Resumo:
Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.
Resumo:
Geochemical analyses have been performed on sediment samples collected during Ocean Drilling Program Leg 178 from the continental rise and outer continental shelf of the Antarctic Peninsula. A suite of 21 trace elements was measured by neutron activation analysis in 39 sediment samples, and major element oxides were determined in 67 samples by electron microprobe analyses of fused glass beads. These geochemical data, combined with the X-ray diffraction and X-ray fluorescence data from shipboard analyses, provide a reasonable estimate of the mineral and chemical composition of sediments deposited along the western margin of the Antarctic Peninsula.
Resumo:
We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.
Resumo:
Manganese nodules have been found by the author in the shallow waters of the Hyotan-se bank west of Shikime-jima, an island of the Izu archipelago in the Sea of Japan. The slopes around the bank are steep and rocks are exposed; gravels and coarse material cover the broad and flat plain on its top; andesite and basalt, which are very common in the bedrock, are found mingled with liparite gravels together with a number of manganese concretions from the bank.
Resumo:
Eleven serpentine samples from DSDP Leg 84 and four serpentinized ultramafic samples from Costa Rica and Guatemala were described and their relict mineral compositions measured by electron microprobe to try to determine the origin of the Leg 84 serpentinites and their relationship to the ultramafic rocks of the onshore ophiolites. The Leg 84 samples comprise more than 90% secondary minerals, principally serpentine, with hematitic and opaque oxides, and minor talc and smectites. Four distinct textural types can be identified according to the distribution of opaque phases and smectite. Remnants of spinel, olivine, orthopyroxene, and clinopyroxene occur variously in the samples; spinal occurs in all the samples. Textural evidence suggests that the serpentinites were originally clinopyroxene-bearing harzburgites. Relict mineral compositions are refractory and relatively uniform: olivine, Fo90.6-90.9; orthopyroxene, En90-91; clinopyroxene, Wo47 En50 Fs3; spinels, Cr/Cr + Al = 0.4-0.6. 567A-29-2, 30-35 cm has slightly more magnesian olivines (Fo92) and orthopyroxene, and more aluminous spinels (Cr/Cr + Al = 0.3). These compositions are similar to those inferred for refractory upper-mantle materials and also fall within the range of compositions for relict minerals in abyssal peridotites. They could be of oceanic origin. The onshore samples include serpentinites, a clinopyroxene-bearing harzburgite, and a clinopyroxenite. They too have magnesium-rich silicate assemblages, but relative to the drilled samples have more iron-rich olivines (Fogo) and more aluminous and sodic pyroxenes; spinels which are clearly relicts are very aluminum-rich (Cr/Cr + Al = 0.1-0.25). These samples are most likely mantle materials, but significantly less depleted. Their relationship to the drilled samples is unclear. Serpentinites were the most common basement materials recovered during Leg 84, and there appears to be a bimodal assemblage (basalt/diabase and serpentine) of igneous rocks sampled from the trench slope. Diapirism of serpentine throughout the trench slope and forearc is suggested as an explanation for this distribution of samples.
Resumo:
The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.
Resumo:
Manganese nodules research has focused on the area between the Clarion Fracture Zone to the North and the Clipperton Fracture Zone to the South where significant concentrations were found ni Ni-Cu. During the CCOP/SOPAC-IOC/IDOE International workshop on the "Geology Mineral Resources and Geophysics of the South Pacific" held in Fiji in September 1975, a working group on manganese nodules was formed by scientists from: CNEXO, Brest, the Institute of Oceanography, New Zealand, Imperial College, London and the Technical University of Aachen. A draft project was presented in July 1976 by J. Andrews, University of Hawaii and G. Pautot, Cnexo on a joint survey under the name of: "Hawaii-Tahiti Transect program". Further details were worked on in September 1976 during the International Geological Congress in Sydney with the participation of D. Cronan, Imperial College, Glasby, New Zealand Geological Survey and G. Friedrich, Aachen TU. The scientific final program was established in July 1977, planning on the participation of three research vessels: the Suroit (CNEXO), the Kana Keoki (U. of Hawaii) and the Sonne (Aachen TU). Several survey areas were selected across the Pacific Ocean (Areas A, B, C, D, E, F, G and H) with about the same crustal age (about 40 million years) and a similar water depths. Being near large fault zones, the ares would be adequate to study the influences of biological productivity, sedimentation rate and possibly volcanic activity on the formation and growth of manganese nodules. The influnece of volcanic activity study would particularly apply to area G being situated near the Marquesas Fracture Zone. The cruise from R/V Sonne started in August 1978 over areas C, D, F, G K. The R/V suroit conducted a similar expedition in 1979 over areas A, B, C, D, E, H and I. Others cruises were planned during the 1979-1980 for the R/V Kana Keoki. The present text relates the R/V Sonne Cruises SO-06/1 and SO-06/2 held within the frame work of this international cooperative project.
Resumo:
Ferromanganese nodules (equivalent to Recent manganese nodules) are described from the Upper Devonian griotte (red pelagic limestone) of the Montagne Noire (S. France) and the Cephalopodenkalk of the Rheinisches Schiefergebirge, West Germany. They occur as encrustations, commonly exhibiting colloform structures, around skeletal material and limestone clasts. The nodules are associated with encrusting foraminifera and a development in the sublittoral environment is envisaged. Chemically, the ferromanganese nodules are depleted in manganese relative to iron, compared with Recent nodules, a loss which is attributed to diagenetic migration of manganese. Electron probe studies show that manganese covaries positively with calcium, but negatively with iron and silicon. Diagenetic enrichment of hematite occurs in the griotte at hardground horizons where two periods of mineralization can be established. The Devonian ferromanganese nodules show that solution of nodules has not occurred on burial.
Resumo:
In order to determine geochemical compositions of Late Cenozoic Arctic seawater, oxide fractions were chemically separated from 15 samples of hand-picked ferromanganese micronodules (50-300 mu m). The success of the chemical separation is indicated by the fact that >97% of the Sr in the oxide fraction is seawater-derived. Rare-earth element (REE) abundances of the Arctic micronodule oxide fractions are much lower than those of bulk Fe-Mn nodules from other ocean basins of the world (e.g., 33 vs. 145 ppm Nd), but the Arctic oxides are enriched in Ce relative to Nd (Ce-N/Nd-N=2.2+/-0.5) and have convex-upward, shale-normalized REE patterns (Nd-N/Gd-N=0.61+/-0.06, Gd-N/Yb-N = 1.5+/-0.2, Nd-N/Yb-N = 0.9+/-0.2), typical of other hydrogenous and diagenetic marine Fe-Mn-oxides. Bulk sediment samples from the central Arctic Ocean have REE abundances and patterns that are characteristic of those of post-Archean shale. Non-detrital fractions (calcite + oxide coatings) of Recent Arctic foraminifera have REE abundances and patterns similar to those of Recent foraminifera from the Atlantic Ocean. Electron microprobe analyses (n=178) of transition elements in 29 Arctic Fe-Mn micronodules from five different stratigraphic intervals of Late Cenozoic sediment indicate that oxide accretion occurred as a result of hydrogenetic and diagenetic processes close to the sediment-seawater interface. Transition element ratios suggest that no oxide accretion occurred during transitions from oxic to suboxic diagenetic conditions. Only K is correlated with Si and Al, and ratios of these elements suggest that they are associated with illite or phillipsite. Ca and Mg are correlated with Mn, which indicates variable substitution of these elements from seawater into the manganate phase. The geochemical characteristics of Arctic Fe-Mn micronodules indicate that the REEs of the oxide fractions were ultimately derived from seawater. However, because of minute contributions of Sr from siliciclastic detritus during diagenesis or during the chemical leaching procedure, Sr isotope compositions of the oxide fractions cannot be used to trace temporal changes in the Sr-87/Sr-86 ratio of Arctic seawater or to improve the chronostratigraphy.
Resumo:
A total of 773 samples were analysed for dissolved manganese (Mn) in the Arctic Ocean aboard R.V. Polarstern during expedition ARK XXII/2 from 28 July until 07 October 2007 from Tromsø (Norway) to Bremerhaven. Concentrations of Mn were elevated in the surface layer with concentrations of up to 6 nM over the deep Basins and over 20 nM in the Laptev Sea. The general distribution of Mn through the water column is consistent with previous studies, but there are differences in the absolute concentrations that are most likely related to differences in sample area, sampling and filtration. The elevated concentrations of Mn in the surface layer are related to fresh water input. This was visible in the strong negative correlations observed between dissolved Mn and salinity. The correlation between Mn and salinity and the correlation between Mn and the quasi conservative trace water mass tracer PO4*, showed fluvial and melt water input and the Pacific and Atlantic origin of the surface waters. A large portion of the Mn delivered by the Arctic rivers is removed in the shelf seas and does not pass into the central basins. Most likely a benthic flux is at the origin of the elevated concentrations of Mn near the sediments in the Barents and Kara Seas. These elevated concentrations of Mn apparently affected the deep basins as well, as maxima in the concentrations of Mn were observed that corresponded with lowered transmission over the continental slope. A maximum in the concentration of Mn in the deep basin corresponded with anomalies in light transmission, potential temperature and dissolved iron, confirming the hydrothermal origin. The hydrothermal plume was observed throughout the Nansen Basin and over the deep Gakkel Ridge around 2500 m depth and a smaller plume was observed around 3200 m. The concentration of Mn at the Mn maximum around 2500 m depth decreased exponentially, consistent with a first order scavenging model. The concentrations of Mn were extremely low in the deep Makarov Basin (~0.05 nM) and slightly higher in the Eurasian Basin (~0.1 nM) outside the influence of the hydrothermal activity.
Resumo:
Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.