953 resultados para Liver tissue
Resumo:
Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p\0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.
Resumo:
Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8–14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
This study used the specific example of 3D printing with acrylonitrile butadiene styrene (ABS) as a means to investigate the potential usefulness of benchtop rapid prototyping as a technique for producing patient specific phantoms for radiotherapy dosimetry. Three small cylinders and one model of a human lung were produced via in-house 3D printing with ABS, using 90%, 50%, 30% and 10% ABS infill densities. These phantom samples were evaluated in terms of their geometric accuracy, tissue equivalence and radiation hardness, when irradiated using a range of clinical radiotherapy beams. The measured dimensions of the small cylindrical phantoms all matched their planned dimensions, within 1mm. The lung phantom was less accurately matched to the lung geometry on which it was based, due to simplifications introduced during the phantom design process. The mass densities, electron densities and linear attenuation coefficients identified using CT data, as well as the results of film measurements made using megavoltage photon and electron beams, indicated that phantoms printed with ABS, using infill densities of 30% or more, are potentially useful as lung- and tissue-equivalent phantoms for patient-specific radiotherapy dosimetry. All cylindrical 3D printed phantom samples were found to be unaffected by prolonged radiation and to accurately match their design specifications. However, care should be taken to avoid oversimplifying anatomical structures when printing more complex phantoms.
Resumo:
This cross-sectional study assessed intellect, cognition, academic function, behaviour, and emotional health of long-term survivors after childhood liver transplantation. Eligible children were >5 yr post-transplant, still attending school, and resident in Queensland. Hearing and neurocognitive testing were performed on 13 transplanted children and six siblings including two twin pairs where one was transplanted and the other not. Median age at testing was 13.08 (range 6.52-16.99) yr; time elapsed after transplant 10.89 (range 5.16-16.37) yr; and age at transplant 1.15 (range 0.38-10.00) yr. Mean full-scale IQ was 97 (81-117) for transplanted children and 105 (87-130) for siblings. No difficulties were identified in intellect, cognition, academic function, and memory and learning in transplanted children or their siblings, although both groups had reduced mathematical ability compared with normal. Transplanted patients had difficulties in executive functioning, particularly in self-regulation, planning and organization, problem-solving, and visual scanning. Thirty-one percent (4/13) of transplanted patients, and no siblings, scored in the clinical range for ADHD. Emotional difficulties were noted in transplanted patients but were not different from their siblings. Long-term liver transplant survivors exhibit difficulties in executive function and are more likely to have ADHD despite relatively intact intellect and cognition.
Resumo:
Aims The aim of the study was to evaluate the significance of total bilirubin, aspartate transaminase (AST), alanine transaminase and gamma-glutamyltransferase (GGT) for predicting outcome in sepsis-associated cholestasis. Methods: A retrospective cohort review of the hospital records was performed in 181 neonates admitted to the Neonatal Care Unit. A comparison was performed between subjects with low and high liver values based on cut-off values from ROC analysis. We defined poor prognosis to be when a subject had prolonged cholestasis of more than 3.5 months, developed severe sepsis, septic shock or had a fatal outcome. Results: The majority of the subjects were male (56%), preterm (56%) and had early onset sepsis (73%). The poor prognosis group had lower initial values of GGT compared with the good prognosis group (P = 0.003). Serum GGT (cut-off value of 85.5 U/L) and AST (cut-off value of 51 U/L) showed significant correlation with the outcome following multivariate analysis. The odds ratio (OR) of low GGT and high AST were OR 4.3 (95% CI:1.6 to11.8) and OR 2.9 (95% CI:1.1 to 8), respectively, for poor prognosis. In subjects with normal AST values, those with low GGT value had relative risk of 2.52 (95% CI:1.4 to 3.5) for poorer prognosis compared with those with normal or high GGT. Conclusion: Serum GGT and AST values can be used to predict the prognosis of patients with sepsis-associated cholestasis
Resumo:
Background: In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways. Methods RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000 cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and immunohistochemistry. Results: Four hundred and sixteen differentially expressed genes were identified that clearly delineated between AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell associated, matrix catabolic, and metabolic pathways. Altered «myogene» profiling was also identified. The inflammatory mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold) and Kremen1 (1.5-fold) were downregulated. Conclusions: Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly involved in the destructive tissue remodelling.
Resumo:
Introduction: A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results: A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.
Resumo:
Objective People with chronic liver disease, particularly those with decompensated cirrhosis, experience several potentially debilitating complications that can have a significant impact on activities of daily living and quality of life. These impairments combined with the associated complex treatment mean that they are faced with specific and high levels of supportive care needs. We aimed to review reported perspectives, experiences and concerns of people with chronic liver disease worldwide. This information is necessary to guide development of policies around supportive needs screening tools and to enable prioritisation of support services for these patients. Design Systematic searches of PubMed, MEDLINE, CINAHL and PsycINFO from the earliest records until 19 September 2014. Data were extracted using standardised forms. A qualitative, descriptive approach was utilised to analyse and synthesise data. Results The initial search yielded 2598 reports: 26 studies reporting supportive care needs among patients with chronic liver disease were included, but few of them were patient-reported needs, none used a validated liver disease-specific supportive care need assessment instrument, and only three included patients with cirrhosis. Five key domains of supportive care needs were identified: informational or educational (eg, educational material, educational sessions), practical (eg, daily living), physical (eg, controlling pruritus and fatigue), patient care and support (eg, support groups), and psychological (eg, anxiety, sadness). Conclusions While several key domains of supportive care needs were identified, most studies included hepatitis patients. There is a paucity of literature describing the supportive care needs of the chronic liver disease population likely to have the most needs—namely those with cirrhosis. Assessing the supportive care needs of people with chronic liver disease have potential utility in clinical practice for facilitating timely referrals to support services.
Resumo:
Purpose The present study aimed to review the effect of dehydration during Ramadan fasting on the health and ocular parameters leading to changes in eye function. Methods Articles included in the study were taken from PubMed, Ovid, Web of Science and Google Scholar up to 2014. Related articles were also obtained from scientific journals on fasting and vision system. Results Dehydration and nutrition changes in Ramadan cause an increase in tear osmolarity, ocular aberration, anterior chamber depth, IOL measurement, central corneal thickness, retinal and choroidal thicknesses, and also a decrease in IOP, tear secretion, and vitreous thickness. Conclusion Much research related to the effect of dehydration on ocular parameters during Ramadan fasting exists. The findings reveal association with significant changes on ocular parameters. Thus, it seems requisite to have a comprehensive study on "fasting and ocular parameters”, which will be helpful in making decisions and giving plan to the patients.
Resumo:
There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.
Resumo:
AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.