982 resultados para LUNG-FUNCTION
Resumo:
Rationale: There are no reports of the systemic human pathology of the novel swine H1N1 influenza (S-OIV) infection. Objectives: The autopsy findings of 21 Brazilian patients with confirmed S-OIV infection are presented. These patients died in the winter of the southern hemisphere 2009 pandemic, with acute respiratory failure. Methods: Lung tissue was submitted to virologic and bacteriologic analysis with real-time reverse transcriptase polymerase chain reaction and electron microscopy. Expression of toll-like receptor (TLR)-3, IFN-gamma, tumor necrosis factor-alpha, CD8(+) T cells and granzyme B(+) cells in the lungs was investigated by immunohistochemistry. Measurements and Main Results: Patients were aged from 1 to 68 years (72% between 30 and 59 yr) and 12 were male. Sixteen patients had preexisting medical conditions. Diff use alveolar damage was present in 20 individuals. in six patients, diffuse alveolar damage was associated with necrotizing bronchiolitis and in five with extensive hemorrhage. There was also a cytopathic effect in the bronchial and alveolar epithelial cells, as well as necrosis, epithelial hyperplasia, and squamous metaplasia of the large airways. There was marked expression of TLR-3 and IFN-gamma and a large number of CD8(+) T cell sand granzyme B(+) cells within the lung tissue. Changes in other organs were mainly secondary to multiple organ failure. Conclusions: Autopsies have shown that the main pathological changes associated with S-OIV infection are localized to the lungs, where three distinct histological patterns can be identified. We also show evidence of ongoing pulmonary aberrant immune response. Our results reinforce the usefulness of autopsy in increasing the understanding of the novel human influenza A (H1N1) infection.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background Airway bypass is a bronchoscopic lung-volume reduction procedure for emphysema whereby transbronchial passages into the lung are created to release trapped air, supported with paclitaxel-coated stents to ease the mechanics of breathing. The aim of the EASE (Exhale airway stents for emphysema) trial was to evaluate safety and efficacy of airway bypass in people with severe homogeneous emphysema. Methods We undertook a randomised, double-blind, sham-controlled study in 38 specialist respiratory centres worldwide. We recruited 315 patients who had severe hyperinflation (ratio of residual volume [RV] to total lung capacity of >= 0.65). By computer using a random number generator, we randomly allocated participants (in a 2:1 ratio) to either airway bypass (n=208) or sham control (107). We divided investigators into team A (masked), who completed pre-procedure and post-procedure assessments, and team B (unmasked), who only did bronchoscopies without further interaction with patients. Participants were followed up for 12 months. The 6-month co-primary efficacy endpoint required 12% or greater improvement in forced vital capacity (FVC) and 1 point or greater decrease in the modified Medical Research Council dyspnoea score from baseline. The composite primary safety endpoint incorporated five severe adverse events. We did Bayesian analysis to show the posterior probability that airway bypass was superior to sham control (success threshold, 0.965). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00391612. Findings All recruited patients were included in the analysis. At 6 months, no difference between treatment arms was noted with respect to the co-primary efficacy endpoint (30 of 208 for airway bypass vs 12 of 107 for sham control; posterior probability 0.749, below the Bayesian success threshold of 0.965). The 6-month composite primary safety endpoint was 14.4% (30 of 208) for airway bypass versus 11.2% (12 of 107) for sham control (judged non-inferior, with a posterior probability of 1.00 [Bayesian success threshold >0.95]). Interpretation Although our findings showed safety and transient improvements, no sustainable benefit was recorded with airway bypass in patients with severe homogeneous emphysema.
Resumo:
Background and Aim: It is unclear to what extent diabetes modulates the ageing-related adaptations of cardiac geometry and function. Methods and Results: We examined 1005 adults, aged 25-74 years, from a population-based survey at baseline in 1994/5 and at follow-up in 2004/5. We compared persistently non-diabetic individuals (ND; no diabetes at baseline and at follow-up, n = 833) with incident (ID; non-diabetic at baseline and diabetic at follow-up, n = 36) and with prevalent diabetics (PD; diabetes at baseline and follow-up examination, n = 21). Left ventricular (LV) geometry and function were evaluated by echocardiography. Statistical analyses were performed with multivariate linear regression models. Over ten years the PD group displayed a significantly stronger relative increase of LV mass (+9.34% vs. +23.7%) that was mediated by a more pronounced increase of LV end-diastolic diameter (+0% vs. +6.95%) compared to the ND group. In parallel, LA diameter increased (+4.50% vs. +12.7%), whereas ejection fraction decreased (+3.02% vs. -4.92%) more significantly in the PD group. Moreover, at the follow-up examination the PD and ID groups showed a significantly worse diastolic function, indicated by a higher E/EM ratio compared with the ND group (11.6 and 11.8 vs. 9.79, respectively). Conclusions: Long-standing diabetes was associated with an acceleration of age-related changes of left ventricular geometry accumulating in an eccentric remodelling of the left ventricle. Likewise, echocardiographic measures of systolic and diastolic ventricular function deteriorated more rapidly in individuals with diabetes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.
Resumo:
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer`s disease, Huntington`s disease and Parkinson`s disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.
Resumo:
Study Objectives: Sleep apnea is common in patients with congestive heart failure, and may contribute to the progression of underlying heart diseae. Cardiovascular and metabolic complications of sleep apnea have been attributed to intermittent hypoxia. Elevated free fatty acids (FFA) are also associated with the progression of metabolic, vascular, and cardiac dysfunction. The objective of this study was to determine the effect of intermittent hypoxia on FFA levels during sleep in patients with heart failure. Design and interventions: During sleep, frequent blood samples were examined for FFA in patients with stable heart (ejection fraction < 40%). In patients with severe sleep apnea (apnea-hypopnea index = 15.4 +/- 3.7 events/h; average low SpO(2) = 93.6%). In patients with severe sleep apnea, supplemental oxygen at 2-4 liters/min was administered on a subsequent night to eliminate hypoxemia. Measurements and Results: Prior to sleep onset, controls and patients with severe apnea exhibited a similar FFA level. After sleep onset, patients with severe sleep apnea exhibited a marked and rapid increase in FFA relative to control subjects. This increase persisted throughout NREM and REM sleep exceeding serum FFA levels in control subjects by 0.134 mmol/L (P = 0.0038) Supplemental oxygen normalized the FFA profile without affecting sleep architecture or respiratory arousal frequency. Conclusion: In patients with heart failure, severe sleep apnea causes surges in nocturnal FFA that may contribute to the accelerated progression of underlying heart disease. Supplemental oxygen prevents that FFA elevation.
Resumo:
Background: To evaluate the cardiopulmonary effects of positive end-expiratory pressure (PEEP) equalization to intra-abdominal pressure (IAP) in an experimental model of intra-abdominal hypertension (IAH) and acute lung injury (ALI). Methods: Eight anesthetized pigs were submitted to IAH of 20 mm Hg with a carbon dioxide insufflator for 30 minutes and then submitted to lung lavage with saline and Tween (2.5%). Pressure x volume curves of the respiratory system were performed by a low flow method during IAH and ALI, and PEEP was subsequently adjusted to 27 cm center dot H(2)O for 30 minutes. Results: IAH decreases pulmonary and respiratory system static compliances and increases airway resistance, alveolar-arterial oxygen gradient, and respiratory dead space. The presence of concomitant ALI exacerbates these findings. PEEP identical to AP moderately improved oxygenation and respiratory mechanics; however, an important decline in stroke index and right ventricle ejection fraction was observed. Conclusions: Simultaneous IAH and ALI produce important impairments in the respiratory physiology. PEEP equalization to AP may improve the respiratory performance, nevertheless with a secondary hemodynamic derangement.
Resumo:
OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.
Resumo:
Introduction. Only about 15% of the potential candidates for lung donation are considered suitable for transplantation. A new method for ex vivo lung perfusion (EVLP) can be used to evaluate and recondition ""marginal,"" nonacceptable lungs. We have herein described an initial experience with ex vivo perfusion of 8 donor lungs deemed nonacceptable. Materials and Methods. After harvesting, the lungs were perfused ex vivo with Steen Solution, an extracellular matrix with high colloid osmotic pressure. A membrane oxygenator connected to the circuit received gas from a mixture of nitrogen and carbon dioxide, maintaining a normal mixed venous blood gas level in the perfusate. The lungs were gradually rewarmed, reperfused, and ventilated for evaluation through analyses of oxygenation capacity, pulmonary vascular resistance (PVR), lung compliance (LC), and biopsy. Results. The arterial oxygen pressure (with inspired oxygen fraction of 100%) increased from a mean of 206 mm Hg in the organ donor at the referring hospital to a mean of 498 mm Hg during the ex vivo evaluation. After 1 hour of EVLP, PVR varied from 440-1454 dynes/sec/cm(5); LC was in the range of 26-90 mL/cmH(2)O. There was no histological deterioration after 10 hours of cold ischemia and 1 hour of EVLP. Conclusions. The ex vivo evaluation model can improve oxygenation capacity of ""marginal"" lungs rejected for transplantation. It has great potential to increase lung donor availability and, possibly, reduce time on the waiting list.
Resumo:
Introduction. Cytomegalovirus (CMV) infection, a common complication in lung transplant (LT) patients, is associated with worse outcomes. Therefore, prophylaxis and surveillance with preemptive treatment is recommended. Objectives. Describe the epidemiology and impact on mortality of CMV infection in LT patients receiving CMV prophylaxis. Methods. Single-center retrospective cohort of LT recipients from August 2003 to March 2008. We excluded patients with survival or follow-up shorter than 30 days. We reviewed medical charts and all CMV pp65 antigen results. Results. Forty-seven patients met the inclusion criteria and 19 (40%) developed a CMV event: eight CMV infections, seven CMV syndromes, and 15 CMV diseases. The mean number of CMV events for each patient was 1.68 +/- 0.88. Twelve patients developed CMV events during prophylaxis (5/12 had CMV serology D+/R-). Forty-six of the 47 patients had at least one episode of acute rejection (mean 2.23 +/- 1.1). Median follow-up was 22 months (range = 3-50). There were seven deaths. Upon univariate analysis, CMV events were related to greater mortality (P = .04), especially if the patient experienced more than two events (P = .013) and if the first event occurred during the first 3 months after LT (P = .003). Nevertheless, a marginally significant relationship between CMV event during the first 3 months after LT and mortality was observed in the multivariate analysis (hazards ratio: 7.46; 95% confidence interval: 0.98-56.63; P = .052). Patients with CMV events more than 3 months post-LT showed the same survival as those who remained CMV-free. Conclusion. Prophylaxis and preemptive treatment are safe and effective; however, the patients who develop CMV events during prophylaxis experience a worse prognosis.
Resumo:
Background. Lung transplantation is the procedure of choice in several end-stage lung diseases. Despite improvements in surgical techniques and immunosuppression, early postoperative complications occur frequently. Objective. To evaluate the pleural inflammatory response after surgery. Patients and Methods. Twenty patients aged 18 to 63 years underwent unilateral or bilateral lung transplantation between August 2006 and March 2008. Proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and IL-8 and vascular endothelial growth factor in pleural fluid and serum were analyzed. For cytokine evaluation, 20-mL samples of pleural fluid and blood (right, left, or both chest cavities) were obtained at 6 hours after surgery and daily until removal of the chest tube or for a maximum of 10 days. Data were analyzed using analysis of variance followed by the Holm-Sidak test. Results. All effusions were exudates according to Light`s criteria. Pleural fluid cytokine concentrations were highest at 6 hours after surgery. Serum concentrations were lower than those in pleural fluid, and IL-1 beta, IL-6, and IL-8 were undetectable at all time points. Conclusions. There is a peak concentration of inflammatory cytokines in the first 6 hours after transplantation, probably reflecting the effects of surgical manipulation. The decrease observed from postoperative day 1 and thereafter suggests the action of the immunosuppression agents and a temporal reduction in pleural inflammation.
Resumo:
Background. Renal failure is the most important comorbidity in patients with heart transplantation, it is associated with increased mortality. The major cause of renal dysfunction is the toxic effects of calcineurin inhibitors (CNI). Sirolimus, a proliferation signal inhibitor, is an imunossupressant recently introduced in cardiac transplantation. Its nonnephrotoxic properties make it an attractive immunosuppressive agent for patients with renal dysfunction. In this study, we evaluated the improvement in renal function after switching the CNI to sirolimus among patients with new-onset kidney dysfunction after heart transplantation. Methods. The study included orthotopic cardiac transplant (OHT) patients who required discontinuation of CNI due to worsening renal function (creatinine clearance <50 mL/min). We excluded subjects who had another indication for initiation of sirolimus, that is, rejection, malignancy, or allograft vasculopathy. The patients were followed for 6 months. The creatinine clearance (CrCl) was estimated according to the Cockcroft-Gault equation using the baseline weight and the serum creatinine at the time of introduction of sirolimus and 6 months there after. Nine patients were included, 7 (78%) were males and the overall mean age was 60.1 +/- 12.3 years and time since transplantation 8.7 +/- 6.1 years. The allograft was beyond 1 year in all patients. There was a significant improvement in the serum creatinine (2.98 +/- 0.9 to 1.69 +/- 0.5 mg/dL, P = .01) and CrCl (24.9 +/- 6.5 to 45.7 +/- 17.2 mL/min, P = .005) at 6 months follow-up. Conclusion. The replacement of CNI by sirolimus for imunosuppressive therapy for patients with renal failure after OHT was associated with a significant improvement in renal function after 6 months.
Resumo:
Objectives: Acute pancreatitis (AP) is a serious disease that is amplified by an associated systemic inflammatory response. We investigated the effect of CO(2) pneumoperitoneum on the local and systemic inflammatory response in AP. Methods: Acute pancreatitis was induced in Wistar rats by 5% taurocholate intraductal injection. Carbon dioxide pneumoperitoneum was applied for 30 minutes before the induction of AP. Inflammatory parameters were evaluated in the peritoneum (ascites, cell number, and tumor necrosis factor alpha [TNF-alpha]), serum (amylase, TNF-alpha, interleukin-6 [IL-6], and IL-10), pancreas (myeloperoxidase [MPO] activity, cyclooxygenase 2 and inducible nitric oxide synthase expression, and histological diagnosis), liver, and lung (mitochondria dysfunction and MPO activity). Results: Abdominal insufflation with CO(2) before induction of AP caused a significant decrease in ascites volume, cells, and TNF-alpha in the peritoneal cavity and in serum TNF-alpha and IL-6 but not IL-10 levels. In the pancreas, this treatment reduced MPO activity, acinar and fat necrosis, and the expression of inducible nitric oxide synthase and cyclooxygenase 2. There were no significant differences on serum amylase levels, liver mitochondrial function, and pulmonary MPO between groups. Conclusions: Our data demonstrated that CO(2) pneumoperitoneum reduced pancreatic inflammation and attenuated systemic inflammatory response in AP. This article suggests that CO(2) pneumoperitoneum plays a critical role on the better outcome in patients undergoing laparoscopic pancreatic surgery.