929 resultados para LABORATORY CONDITIONS
Resumo:
The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn
Resumo:
This doctoral thesis was focused on the investigation of enantiomeric and non-enantiomeric biogenic organic compound (BVOC) emissions from both leaf and canopy scales in different environments. In addition, the anthropogenic compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) were studied. BVOCs are emitted into the lower troposphere in large quantities (ca. 1150 Tg C ·yr-1), approximately an order of magnitude greater than the anthropogenic VOCs. BVOCs are particularly important in tropospheric chemistry because of their impact on ozone production and secondary organic aerosol formation or growth. The BVOCs examined in this study were: isoprene, (-)/ (+)-α-pinene, (-)/ (+)-ß-pinene, Δ-3-carene, (-)/ (+)-limonene, myrcene, eucalyptol and camphor, as these were the most abundant BVOCs observed both in the leaf cuvette study and the ambient measurements. In the laboratory cuvette studies, the sensitivity of enantiomeric enrichment change from the leaf emission has been examined as a function of light (0-1600 PAR) and temperature (20-45°C). Three typical Mediterranean plant species (Quercus ilex L., Rosmarinus officinalis L., Pinus halepensis Mill.) with more than three individuals of each have been investigated using a dynamic enclosure cuvette. The terpenoid compound emission rates were found to be directly linked to either light and temperature (e.g. Quercus ilex L.) or mainly to temperature (e.g. Rosmarinus officinalis L., Pinus halepensis Mill.). However, the enantiomeric signature showed no clear trend in response to either the light or temperature; moreover a large variation of enantiomeric enrichment was found during the experiment. This enantiomeric signature was also used to distinguish chemotypes beyond the normal achiral chemical composition method. The results of nineteen Quercus ilex L. individuals, screened under standard conditions (30°C and 1000 PAR) showed four different chemotypes, whereas the traditional classification showed only two. An enclosure branch cuvette set-up was applied in the natural boreal forest environment from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) and the direct emissions compared with ambient air measurements above the canopy during the HUMPPA-COPEC 2010 summer campaign. The chirality of a-pinene was dominated by (+)-enantiomers from Scots pine while for Norway spruce the chirality was found to be opposite (i.e. Abstract II (-)-enantiomer enriched) becoming increasingly enriched in the (-)-enantiomer with light. Field measurements over a Spanish stone pine forest were performed to examine the extent of seasonal changes in enantiomeric enrichment (DOMINO 2008). These showed clear differences in chirality of monoterpene emissions. In wintertime the monoterpene (-)-a-pinene was found to be in slight enantiomeric excess over (+)-a-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (-)-a-pinene. This indicated a strong seasonal variance in the enantiomeric emission ratio which was not manifested in the day/night temperature cycles in wintertime. A clear diurnal cycle of enantiomeric enrichment in a-pinene was also found over a French oak forest and the boreal forest. However, while in the boreal forest (-)-a-pinene enrichment increased around the time of maximum light and temperature, the French forest showed the opposite tendency with (+)-a-pinene being favored. For the two field campaigns (DOMINO 2008 and HUMPPA-COPEC 2010), the BTEX were also investigated. For the DOMINO campaign, mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the ß-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed. For HUMPPA-COPEC campaign, benzene and toluene mixing ratios can clearly define the air mass influenced by the biomass burning pollution plume from Russia.
Resumo:
In animal experiments, animals, husbandry and test procedures are traditionally standardized to maximize test sensitivity and minimize animal use, assuming that this will also guarantee reproducibility. However, by reducing within-experiment variation, standardization may limit inference to the specific experimental conditions. Indeed, we have recently shown in mice that standardization may generate spurious results in behavioral tests, accounting for poor reproducibility, and that this can be avoided by population heterogenization through systematic variation of experimental conditions. Here, we examined whether a simple form of heterogenization effectively improves reproducibility of test results in a multi-laboratory situation. Each of six laboratories independently ordered 64 female mice of two inbred strains (C57BL/6NCrl, DBA/2NCrl) and examined them for strain differences in five commonly used behavioral tests under two different experimental designs. In the standardized design, experimental conditions were standardized as much as possible in each laboratory, while they were systematically varied with respect to the animals' test age and cage enrichment in the heterogenized design. Although heterogenization tended to improve reproducibility by increasing within-experiment variation relative to between-experiment variation, the effect was too weak to account for the large variation between laboratories. However, our findings confirm the potential of systematic heterogenization for improving reproducibility of animal experiments and highlight the need for effective and practicable heterogenization strategies.
Resumo:
Eosinophils and gastrointestinal tract interact in an intimate and enigmatic relationship. Under inflammatory conditions, eosinophil infiltration in the gastrointestinal tract is a common feature of numerous eosinophilic gastrointestinal disorders (EGIDs). EGIDs are disorders, for which the diagnosis is relatively difficult. Nevertheless, some common laboratory techniques are currently used for their diagnosis and disease monitoring. Besides eosinophils, mast cells and T cells have also been suggested to play a role in the pathogenesis of these disorders. Here, we review the pathogenesis and common laboratory approaches applied for their diagnosis, in particular eosinophil and mast cell markers.
Resumo:
There is no accepted way of measuring prothrombin time without time loss for patients undergoing major surgery who are at risk of intraoperative dilution and consumption coagulopathy due to bleeding and volume replacement with crystalloids or colloids. Decisions to transfuse fresh frozen plasma and procoagulatory drugs have to rely on clinical judgment in these situations. Point-of-care devices are considerably faster than the standard laboratory methods. In this study we assessed the accuracy of a Point-of-care (PoC) device measuring prothrombin time compared to the standard laboratory method. Patients undergoing major surgery and intensive care unit patients were included. PoC prothrombin time was measured by CoaguChek XS Plus (Roche Diagnostics, Switzerland). PoC and reference tests were performed independently and interpreted under blinded conditions. Using a cut-off prothrombin time of 50%, we calculated diagnostic accuracy measures, plotted a receiver operating characteristic (ROC) curve and tested for equivalence between the two methods. PoC sensitivity and specificity were 95% (95% CI 77%, 100%) and 95% (95% CI 91%, 98%) respectively. The negative likelihood ratio was 0.05 (95% CI 0.01, 0.32). The positive likelihood ratio was 19.57 (95% CI 10.62, 36.06). The area under the ROC curve was 0.988. Equivalence between the two methods was confirmed. CoaguChek XS Plus is a rapid and highly accurate test compared with the reference test. These findings suggest that PoC testing will be useful for monitoring intraoperative prothrombin time when coagulopathy is suspected. It could lead to a more rational use of expensive and limited blood bank resources.
Resumo:
Bovine besnoitiosis is considered an emerging chronic and debilitating disease in Europe. Many infections remain subclinical, and the only sign of disease is the presence of parasitic cysts in the sclera and conjunctiva. Serological tests are useful for detecting asymptomatic cattle/sub-clinical infections for control purposes, as there are no effective drugs or vaccines. For this purpose, diagnostic tools need to be further standardized. Thus, the aim of this study was to compare the serological tests available in Europe in a multi-centred study. A coded panel of 241 well-characterized sera from infected and non-infected bovines was provided by all participants (SALUVET-Madrid, FLI-Wusterhausen, ENV-Toulouse, IPB-Berne). The tests evaluated were as follows: an in-house ELISA, three commercial ELISAs (INGEZIM BES 12.BES.K1 INGENASA, PrioCHECK Besnoitia Ab V2.0, ID Screen Besnoitia indirect IDVET), two IFATs and seven Western blot tests (tachyzoite and bradyzoite extracts under reducing and non-reducing conditions). Two different definitions of a gold standard were used: (i) the result of the majority of tests ('Majority of tests') and (ii) the majority of test results plus pre-test information based on clinical signs ('Majority of tests plus pre-test info'). Relative to the gold standard 'Majority of tests', almost 100% sensitivity (Se) and specificity (Sp) were obtained with SALUVET-Madrid and FLI-Wusterhausen tachyzoite- and bradyzoite-based Western blot tests under non-reducing conditions. On the ELISAs, PrioCHECK Besnoitia Ab V2.0 showed 100% Se and 98.8% Sp, whereas ID Screen Besnoitia indirect IDVET showed 97.2% Se and 100% Sp. The in-house ELISA and INGEZIM BES 12.BES.K1 INGENASA showed 97.3% and 97.2% Se; and 94.6% and 93.0% Sp, respectively. IFAT FLI-Wusterhausen performed better than IFAT SALUVET-Madrid, with 100% Se and 95.4% Sp. Relative to the gold standard 'Majority of test plus pre-test info', Sp significantly decreased; this result was expected because of the existence of seronegative animals with clinical signs. All ELISAs performed very well and could be used in epidemiological studies; however, Western blot tests performed better and could be employed as a posteriori tests for control purposes in the case of uncertain results from valuable samples.
Resumo:
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Abortion in ruminants is a major cause of economic loss worldwide, and the management and control of outbreaks is important in limiting their spread, and in preventing zoonotic infections. Given that rapid and accurate laboratory diagnosis is central to controlling abortion outbreaks, the submission of tissue samples to laboratories offering the most appropriate tests is essential. Direct antigen and/or DNA detection methods are the currently preferred methods of reaching an aetiological diagnosis, and ideally these results are confirmed by the demonstration of corresponding macroscopic and/or histopathological lesions in the fetus and/or the placenta. However, the costs of laboratory examinations may be considerable and, even under optimal conditions, the percentage of aetiological diagnoses reached can be relatively low. This review focuses on the most commonly occurring and important abortifacient pathogens of ruminant species in Europe highlighting their epizootic and zoonotic potential. The performance characteristics of the various diagnostic methods used, including their specific advantages and limitations, are discussed.
Resumo:
When kept in barren and restrictive cages, animals frequently develop stereotypic behaviour patterns that are characterized by high repetition rates, conspicuous invariance and an apparent lack of function. Although millions of animals are affected, the underlying causes and mechanisms are still unclear. Growing evidence suggests that cage-induced stereotypies may reflect pathological dysfunction within basal ganglia circuitry expressed by perseverative behaviour. In order to assess whether variation in stereotypy performance and variation in perseverative behaviour may have a common cause in ICR CD-1 mice, we assessed the effects of environmental enrichment on both phenomena. We raised 48 female ICR CD-1 mice in standard or enriched cages from three weeks to either 6 or 11 months of age and measured stereotypy level in the home cage and perseveration on an extinction task. We further examined whether enriched rearing conditions (early enrichment) protect mice from the developing stereotypies later in life and whether stereotypies developed in barren cages would persist in an enriched environment (late enrichment) by transferring standard mice to enriched cages and vice versa for 14 weeks after completion of the extinction task. We found no evidence for a causal relation between stereotypy and perseveration in mice. However, transfer to enriched cages reduced stereotypy levels significantly both at 6 and 11 months of age indicating that stereotypies had not become established yet. Finally, we found that removing enrichments at both ages did not induce higher stereotypy levels, thereby confirming earlier reports of a neuroprotective effect of early enrichment.
Resumo:
The abundance of atmospheric oxygen and its evolution through Earth's history is a highly debated topic. The earliest change of the Mo concentration and isotope composition of marine sediments are interpreted to be linked to the onset of the accumulation of free O2 in Earth's atmosphere. The O2 concentration needed to dissolve significant amounts of Mo in water is not yet quantified, however. We present laboratory experiments on pulverized and surface-cleaned molybdenite (MoS2) and a hydrothermal breccia enriched in Mo-bearing sulphides using a glove box setup. Duration of an experiment was 14 days, and first signs of oxidation and subsequent dissolution of Mo compounds start to occur above an atmospheric oxygen concentration of 72 ± 20 ppmv (i.e., 2.6 to 4.6 × 10−4 present atmospheric level (PAL)). This experimentally determined value coincides with published model calculations supporting atmospheric O2 concentrations between 1 × 10−5 to 3 × 10−4 PAL prior to the Great Oxidation Event and sets an upper limit to the molecular oxygen needed to trigger Mo accumulation and Mo isotope variations recorded in sediments. In combination with the published Mo isotope composition of the rock record, this result implies an atmospheric oxygen concentration prior to 2.76 Ga of below 72 ± 20 ppmv.
Resumo:
Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 +/- 2 K), and pressure (6 +/- 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6x10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. Key Words: Martian surface-Organic chemistry-Photochemistry-Astrochemistry-Nontronite-Phyllosilicates. Astrobiology 15, 221-237.
Resumo:
Species variations in formaldehyde solutions and gases were investigated by means of infrared spectral analysis. Double beam infrared spectrometry in conjunction with sodium chloride wafer technique and solvent compensation technique were employed. Formaldehyde species in various solutions were investigated. Formalin 37% was stable for many months. Refrigeration had no effects on its stability. Spectral changes were detected in 1000 ppm formaldehyde solutions. The absorbances of very diluted solutions up to 100 ppm were lower than the detection limit of the instruments. Solvent compensation improved resolution, but was associated with an observed lack of repeatability. Formaldehyde species in animal chambers containing animals and in mobile home air were analyzed with the infrared spectrophotometer equipped with a 10 cm gas cell. Spectra were not different from the spectrum of clean air. A portable single beam infrared spectrometer with a 20 meter pathlength was used for reinvestigation. Indoor formaldehyde could not be detected in the spectral; conversely, an absorption peak at 3.58 microns was found in the spectra of 3 and 15 ppm formaldehyde gas in animal chambers. This peak did not appear in the spectrum of the control chamber. Because of concerns over measurement bias among various analytical methods for formaldehyde, side-by-side comparisons were conducted in both laboratory and field measurements. The chromotropic acid method with water and 1% sodium bisulfite as collection media, the pararosaniline method, and a single beam infrared spectrometer were compared. Measurement bias was elucidated and the extent of the effects of temperature and humidity was also determined. The problems associated with related methods were discussed. ^
Resumo:
Shipboard laboratory index property data, shore-based consolidation tests, and in-situ stress and pore-pressure measurements are used in this study to constrain the stress conditions at ODP Site 808, Nankai Trough. Results of these tests are presented along with additional interpretations of porosity rebound and permeability. The sediment at Site 808 is highly affected by excess fluid pressures throughout the sediment column. Excess fluid pressure is severe below the major fault boundary, the décollement. The in-situ measurement of lateral stresses, which are shallow in the sediment section, confirms that the principal stress direction is rotated from a "normal" basin-type condition where the principal stress direction is vertical.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability