965 resultados para Intelligent management
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
This paper studies Optimal Intelligent Supervisory Control System (OISCS) model for the design of control systems which can work in the presence of cyber-physical elements with privacy protection. The development of such architecture has the possibility of providing new ways of integrated control into systems where large amounts of fast computation are not easily available, either due to limitations on power, physical size or choice of computing elements.
Resumo:
This article describes a new approach in the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.
Resumo:
OBJECTIVE: Various support measures useful for promoting joint change approaches to the improvement of both shiftworking arrangements and safety and health management systems were reviewed. A particular focus was placed on enterprise-level risk reduction measures linking working hours and management systems. METHODS: Voluntary industry-based guidelines on night and shift work for department stores and the chemical, automobile and electrical equipment industries were examined. Survey results that had led to the compilation of practicable measures to be included in these guidelines were also examined. The common support measures were then compared with ergonomic checkpoints for plant maintenance work involving irregular nightshifts. On the basis of this analysis, a new night and shift work checklist was designed. RESULTS: Both the guidelines and the plant maintenance work checkpoints were found to commonly cover multiple issues including work schedules and various job-related risks. This close link between shiftwork arrangements and risk management was important as shiftworkers in these industries considered teamwork and welfare services to be essential for managing risks associated with night and shift work. Four areas found suitable for participatory improvement by managers and workers were work schedules, ergonomic work tasks, work environment and training. The checklist designed to facilitate participatory change processes covered all these areas. CONCLUSIONS: The checklist developed to describe feasible workplace actions was suitable for integration with comprehensive safety and health management systems and offered valuable opportunities for improving working time arrangements and job content together.
Resumo:
Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.
Resumo:
Energy resources management can play a very relevant role in future power systems in a SmartGrid context, with intensive penetration of distributed generation and storage systems. This paper deals with the importance of resource management in incident situations. The paper presents DemSi, an energy resources management simulator that has been developed by the authors to simulate electrical distribution networks with high distributed generation penetration, storage in network points and customers with demand response contracts. DemSi is used to undertake simulations for an incident scenario, evidencing the advantages of adequately using flexible contracts, storage, and reserve in order to limit incident consequences.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
The Information and Communication Technology (ICT) provide new strategies for disseminating information and new communication models in order to change attitudes and human behaviour concerning to education. Nowadays the internet is crucial as a means of communication and information sharing. To education or tutorship will be required to use ICT, supported on the internet, to establish the communication of teacher-student and student-student, disseminating the content of the subjects, and as a way of teaching and learning process. This paper presents an intelligent tutor that aims to be a tool to support teaching and learning in the field of the electrical engineering project.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems.
Resumo:
Nowadays computing technology research is focused on the development of Smart Environments. Following that line of thought several Smart Rooms projects were developed and their appliances are very diversified. The appliances include projects in the context of workplace or everyday living, entertainment, play and education. These appliances envisage to acquire and apply knowledge about the environment state in order to reason about it so as to define a desired state for its inhabitants and perform adaptation adaptation to these desires and therefore improving their involvement and satisfaction with that environment.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
Sendo os desperdícios “Waste” associados à atividade industrial em Portugal e nos mercados globais e os seus custos inerentes, uma das maiores preocupações a todos os níveis de gestão empresarial, a filosofia “Lean” nasce como ajuda e encaminhamento na solução desta problemática. O conceito “Lean”, no que se refere à indústria, desde sempre e até aos dias de hoje, tem uma enorme ênfase, com a adoção deste conceito.Verificam-se bons resultados ao nível da redução de custos, melhoria da qualidade geral dos artigos produzidos, no controlo da produção em geral e é uma poderosa ferramenta no estreitamento da relação entre os diferentes intervenientes da cadeia de valor de determinado produto, sobretudo com fornecedores e com clientes. Com “Lean Management” e “Glass Wall Management”, em ambientes onde as empresas mais avançadas estão a procurar melhorar a sua competitividade através de uma gestão transparente (“Glass Wall Management”), a partir da qual, “toda informação relevante é compartilhada de maneira a que todos entendam a situação”(Suzaki, K, 1993), ganha cada vez mais importância a existência de uma estrutura organizacional que permita esta transparência e a consequente maturidade das empresas. Neste trabalho foram descritos alguns processos de gestão transparente desenvolvidos nos últimos dois anos numa PME portuguesa, aprofundando o processo de gestão transparente vigente e as ferramentas que ajudam a empresa e que na sua globalidade poderão ser extrapoladas a outras PME Portuguesas de modo que a informação importante e relevante seja partilhada por todos os intervenientes na estrutura empresarial, sendo entendida e desenvolvida por todos através de Edições e Revisões aos documentos mais importantes da empresa. Neste estudo foram contactadas vinte e uma PME’S portuguesas de tipologia de produção MTO (Make to Order) do sector dos estofos/mobiliário, e solicitado o preenchimento de um Questionário, tendo como fim em vista, a verificação do uso desta metodologia “Glass Wall Management” à escala empresarial portuguesa e a interpretação do Conceito Geral “Lean” como filosofia de redução de materiais, tempos e custos.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.