951 resultados para Insect sounds.
Resumo:
Spectral data were collected of intact and ground kernels using 3 instruments (using Si-PbS, Si, and InGaAs detectors), operating over different areas of the spectrum (between 400 and 2500 nm) and employing transmittance, interactance, and reflectance sample presentation strategies. Kernels were assessed on the basis of oil and water content, and with respect to the defect categories of insect damage, rancidity, discoloration, mould growth, germination, and decomposition. Predictive model performance statistics for oil content models were acceptable on all instruments (R2 > 0.98; RMSECV < 2.5%, which is similar to reference analysis error), although that for the instrument employing reflectance optics was inferior to models developed for the instruments employing transmission optics. The spectral positions for calibration coefficients were consistent with absorbance due to the third overtones of CH2 stretching. Calibration models for moisture content in ground samples were acceptable on all instruments (R2 > 0.97; RMSECV < 0.2%), whereas calibration models for intact kernels were relatively poor. Calibration coefficients were more highly weighted around 1360, 740 and 840 nm, consistent with absorbance due to overtones of O-H stretching and combination. Intact kernels with brown centres or rancidity could be discriminated from each other and from sound kernels using principal component analysis. Part kernels affected by insect damage, discoloration, mould growth, germination, and decomposition could be discriminated from sound kernels. However, discrimination among these defect categories was not distinct and could not be validated on an independent set. It is concluded that there is good potential for a low cost Si photodiode array instrument to be employed to identify some quality defects of intact macadamia kernels and to quantify oil and moisture content of kernels in the process laboratory and for oil content in-line. Further work is required to examine the robustness of predictive models across different populations, including growing districts, cultivars and times of harvest.
Resumo:
Resistance to phosphine was characterised in strains of rice weevil, Sirophilus oryzae, and the psocids Liposcelis entomophila and L. decolor from China and Australia. Mixed-age cultures (containing all life stages) of insects were tested using a flow-through apparatus. The criterion of response was 'time to population extinction' defined as the exposure period, in days, at which 100% mortality of adults and no live progeny were achieved. Chinese S. oryzae took 11 and 7 days for population extinction at 200 and 700 ppm phosphine, respectively, compared with the Australian strain, which was controlled in 7 and 5 days, respectively. Similarly, the Chinese strains L. Enfornophila and L. decolor were generally more difficult to control than the corresponding Australian strains. The Chinese strains of L. decolor showed resistance levels stronger than any grain storage insect pest species so far detected in Australia. This research allows us to evaluate the likely significance of potential new resistance to the Australian grain industry and to prepare effective fumigation dosages and resistance management strategies to combat new strong resistances before they emerge here.
Resumo:
A large weevil was found infesting macadamia nuts on the Atherton Tableland during the 1994/95 season. It was unrepresented in various Australian insect collections but thought to belong to the genus Sigastus. This paper reports some preliminary studies on its biology, pest status and control. From 4-6 weeks after first nut-set adult females commence laying single eggs through the husk, after first scarifying an oviposition site. The nut stalk is then cleaved leading to rapid abscission. Nuts were generally attacked up until hard shell formation. Weevil larvae consumed whole kernels, with % survival higher and larval duration shorter in larger nuts. Infestation rates increased with increasing nut diameter, reaching 72.8% of fallen nuts by mid-October. A crop loss of 30% could be attributed to weevils in an unsprayed orchard. However, adult weevils are very susceptible to both carbaryl and methidathion sprays. In addition, exposure of infested nuts to full sunlight over several weeks kills 100% of larvae. Crops should be surveyed for weevil damage from the 5-10 mm diameter stage until mid-December. Methidathion used as an initial spray for fruitspotting bugs should provide control. Organic growers are advised to sweep infested nuts into mown interrows where solarisation will kill larvae.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
1 Five experiments were conducted during 1995-99 in stone fruit orchards on the Central Coast and in inland New South Wales, Australia, on the use of synthetic aggregation pheromones and a coattractant to suppress populations of the ripening fruit pests Carpophilus spp. (Coleoptera: Nitidulidae). 2 Perimeter-based suppression traps baited with pheromone and coattractant placed at 3m intervals around small fruit blocks, caught large numbers of Carpophilus spp. Very small populations of Carpophilus spp. occurred within blocks, and fruit damage was minimal. 3 Carpophilus spp. populations in stone fruit blocks 15-370m from suppression traps were also small and non-damaging, indicating a large zone of pheromone attractivity. 4 Pheromone/coattractant-baited suppression traps appeared to divert Carpophilus spp. from nearby (130 m) ripening stone fruit. Ten metal drums containing decomposing fruit, baited with pheromone and treated with insecticide, attracted Carpophilus spp. and appeared to reduce populations and damage to ripening fruit at distances of 200-500 m. Populations and damage were significantly greater within 200m of the drums and may have been caused by ineffective poisoning or poor quality/overcrowding of fruit resources in the drums. 5 Suppression of Carpophilus spp. populations using synthetic aggregation pheromones and a coattractant appears to be a realistic management option in stone fruit orchards. Pheromone-mediated diversion of beetle populations from ripening fruit may be more practical than perimeter trapping, but more research is needed on the effective range of Carpophilus pheromones and the relative merits of trapping compared to attraction to insecticide-treated areas.
Resumo:
Fermenting apple juice (FAJ) contained within polyacrylamide granules was an effective pheromone coattractant for Carpophilus davidsoni in trapping experiments conducted in stone fruit orchards in southern New South Wales. Fermenting apple juice-baited traps captured as many beetles as traps baited with the 'standard' coattractant fermenting bread dough (FBD), either alone or in combination with aggregation pheromone. Increasing the interval of FAJ replacement to 2 weeks instead of 1 week, as is necessary for FBD, did not reduce trapping efficiency. Replacement of FAJ every three weeks did not affect captures of C. davidsoni in one experiment but did reduce captures of Carpophilus mutilatus. In a second experiment, captures of C. davidsoni were also reduced. Fermenting apple juice contained within polyacrylamide granules replaced at fortnightly intervals is an effective, convenient and practical pheromone coattractant for Carpophilus spp.
Resumo:
Nematospora (Eremothecium) coryli was isolated from Citrus and identified for the first time in Australia. This insect-transmitted yeast was associated with dry rot in cultivated and native Citrus fruits. Although N. coryli is known as a serious seed pathogen of many tropical and sub-tropical plants, evidence is presented that it has been present and undetected in Queensland for at least ninety years.
Resumo:
The thesis addresses the problem of Finnish Iron Age bells, pellet bells and bell pendants, previously unexplored musical artefacts from 400–1300 AD. The study, which contributes to the field of music archaeology, aims to provide a gateway to ancient soundworlds and ideas of music making. The research questions include: Where did these metal artefacts come from? How did they sound? How were they used? What did their sound mean to the people of the Iron Age? The data collected at the National Museum of Finland and at several provincial museums covers a total of 486 bells, pellet bells and bell pendants. By means of a cluster analysis, each category was divided into several subgroups. The subgroups, which all seem to have a different dating and geographical distribution, represent a spread of both local and international manufacturing traditions. According to an elemental analysis, the material varies from iron to copper-tin, copper-lead and copper-tin-lead alloys. Clappers, pellets and pebbles prove that the bells and pellet bells were indisputably instruments intended for sound production. Clusters of small bell pendants, however, probably produced sound by jingling against each other. Spectrogram plots reveal that the partials of the still audible sounds range from 1 000 to 19 850 Hz. On the basis of 129 inhumation graves, hoards, barrows and stray finds, it seems evident that the bells, pellet bells and bell pendants were fastened to dresses and horse harnesses or carried in pouches and boxes. The resulting acoustic spaces could have been employed in constructing social hierarchies, since the instruments usually appear in richly furnished graves. Furthermore, the instruments repeatedly occur with crosses, edge tools and zoomorphic pendants that in the later Finnish-Karelian culture were regarded as prophylactic amulets. In the Iron Age as well as in later folk culture, the bell sounds seem to have expressed territorial, social and cosmological boundaries.
Resumo:
We determined the quantity and chemical composition of cuticular hydrocarbons of different strains, sex and age of buffalo flies, Haematobia exigua. The quantity of cuticular hydrocarbons increased from less than 1 µg/fly for newly-emerged flies to over 11 µg/fly in 13 d-old flies. The hydrocarbon chain length varied from C21 to C29, with unbranched alkanes and monounsaturated alkenes the major components. Newly emerged flies produced almost exclusively C27 hydrocarbons. Increasing age was accompanied by the appearance of hydrocarbons with shorter carbon chains and an increase in the proportion of alkenes. 11 Tricosene and 7-tricosene were the most abundant hydrocarbons in mature buffalo flies. Cuticular hydrocarbons of buffalo flies are distinctly different from those of horn flies. The most noticeable differences were in the C23 alkenes, with the major isomers 11- and 7-tricosene in buffalo flies and (Z)-9- and (Z)-5-tricosene in horn flies, respectively. Cuticular hydrocarbon analysis provides a reliable method to differentiate buffalo and horn fly, which are difficult to separate morphologically. The differences in cuticular hydrocarbons also support their recognition as separate species, H. exigua and H. irritans, rather than as subspecies.
Resumo:
Nezara viridula (L.) is a cosmopolitan, polyphagous heteropteran that causes economic damage to many crop species. At present, control of N. viridula in Australia and other countries relies heavily upon insecticides, most of which are disruptive to beneficial insects, constituting a constraint on integrated pest management (IPM). Much research has been conducted into non-chemical control methods for N. viridula. This paper reviews the potential for and limitations of sterile insect technique, classical, inundative and conservation biological control, and trap cropping. None of these techniques appear to be adequate for control of N. viridula when used alone but there is scope for these non-chemical approaches to be adopted for use in integrated management of this pest. A proposal is given for one such integrated approach for future development. It includes biopesticides, trap crops and carefully targeted habitat manipulation to enhance arthropod natural enemies as well as area-wide management and grower education.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
Two geometrid moths Chiasmia inconspicua and Chiasmia assimilis, identified as potential biological control agents for prickly acacia Acacia nilotica subsp. indica, were collected in Kenya and imported into quarantine facilities in Australia where laboratory cultures were established. Aspects of the biologies of both insects were studied and CLIMEX® models indicating the climatically favourable areas of Australia were developed. Host range tests were conducted using an approved test list of 74 plant species and no-choice tests of neonate larvae placed on both cut foliage and potted plants. C. inconspicua developed through to adult on prickly acacia and, in small numbers, Acacia pulchella. C. assimilis developed through to adult on prickly acacia and also in very small numbers on A. pulchella, A. deanei, A. decurrens, and A. mearnsii. In all experiments, the response on prickly acacia could be clearly differentiated from the responses on the non-target species. Both insects were approved for release in Australia. Over a three-year period releases were made at multiple sites in north Queensland, almost all in inland areas. There was no evidence of either insect's establishment and both colonies were terminated. A new colony of C. assimilis was subsequently established from insects collected in South Africa and releases of C. assimilis from this new colony were made into coastal and inland infestations of prickly acacia. Establishment was rapid at one coastal site and the insect quickly spread to other infestations. Establishment at one inland area was also confirmed in early 2006. The establishment in coastal areas supported a CLIMEX model that indicated that the climate of coastal areas was more suitable than inland areas.
Resumo:
Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion- resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC99.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies.
Resumo:
In zucchini, the use of row covers until flowering and the insect growth regulator (IGR) pyriproxyfen are effective methods of reducing the number of insects, especially silverleaf whitefly (Bemisia tabaci (Gennadius) Biotype B), on plants. We compared floating row covers (FRCs) up until flowering with silverleaf whitefly (SLW) introduced (FRC + SLW), or not introduced (FRC-only), or with introduction of SLW in open plots (SLW-only), or with introduction of SLW in open plots with IGR (SLW + IGR). FRC increased temperature and humidity compared with the uncovered treatments. Average fruit weight was less (P < 0.01) for the FRC + SLW treatment compared with the other treatments and the percentage of marketable fruit was less for the FRC + SLW than for the other three treatments. This result indicates that the use of either row covers or IGR controls whiteflies, reduces fruit damage and increases the size, weight, and quality of fruit, and may also control other sap-sucking insects. However, if SLW are already present on plants, the use of FRC may reduce predation and favour build up of SLW. Thus, FRC and IGR, if used judiciously, may provide an effective alternative to broad-spectrum pesticides in small-scale cucurbit production.
Resumo:
An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (α-pinene, β-myrcene, limonene, E-β-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.