927 resultados para Independent Order of Odd Fellows
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
Vertical integration is grounded in economic theory as a corporate strategy for reducing cost and enhancing efficiency. There were three purposes for this dissertation. The first was to describe and understand vertical integration theory. The review of the economic theory established vertical integration as a corporate cost reduction strategy in response to environmental, structural and performance dimensions of the market. The second purpose was to examine vertical integration in the context of the health care industry, which has greater complexity, higher instability, and more unstable demand than other industries, although many of the same dimensions of the market supported a vertical integration strategy. Evidence on the performance of health systems after integration revealed mixed results. Because the market continues to be turbulent, hybrid non-owned integration in the form of alliances have increased to over 40% of urban hospitals. The third purpose of the study was to examine the application of vertical integration in health care and evaluate the effects. The case studied was an alliance formed between a community hospital and a tertiary medical center to facilitate vertical integration of oncology services while maintaining effectiveness and preserving access. The economic benefits for 1934 patients were evaluated in the delivery system before and after integration with a more detailed economic analysis of breast, lung, colon/rectal, and non-malignant cases. A regression analysis confirmed the relationship between the independent variables of age, sex, location of services, race, stage of disease, and diagnosis, and the dependent variable, cost. The results of the basic regression model, as well as the regression with first-order interaction terms, were statistically significant. The study shows that vertical integration at an intermediate health care system level has economic benefits. If the pre-integration oncology group had been treated in the post-integration model, the expected cost savings from integration would be 31.5%. Quality indicators used were access to health care services and research treatment protocols, and access was preserved in the integrated model. Using survival as a direct quality outcome measure, the survival of lung cancer patients was statistically the same before and after integration. ^
Resumo:
BACKGROUND: Investigating individual, as opposed to predetermined, quality of life domains may yield important information about quality of life. This study investigated the individual quality of life domains nominated by youth with type 1 diabetes. METHODS: Eighty young people attending a diabetes summer camp completed the Schedule for the Evaluation of Individual Quality of Life-Direct Weighting interview, which allows respondents to nominate and evaluate their own quality of life domains. RESULTS: The most frequently nominated life domains were 'family', 'friends', 'diabetes', 'school', and 'health' respectively; ranked in terms of importance, domains were 'religion', 'family', 'diabetes', 'health', and 'the golden rule'; ranked in order of satisfaction, domains were 'camp', 'religion', 'pets', and 'family' and 'a special person' were tied for fifth. Respondent age was significantly positively associated with the importance of 'friends', and a significantly negatively associated with the importance of 'family'. Nearly all respondents nominated a quality of life domain relating to physical status, however, the specific physical status domain and the rationale for its nomination varied. Some respondents nominated 'diabetes' as a domain and emphasized diabetes 'self-care behaviors' in order to avoid negative health consequences such as hospitalization. Other respondents nominated 'health' and focused more generally on 'living well with diabetes'. In an ANOVA with physical status domain as the independent variable and age as the dependent variable, participants who nominated 'diabetes' were younger (M = 12.9 years) than those who nominated 'health' (M = 15.9 years). In a second ANOVA, with rationale for nomination the physical status domain as the independent variable, and age as the dependent variable, those who emphasized 'self care behaviors' were younger (M = 11.8 years) than those who emphasized 'living well with diabetes' (M = 14.6 years). These differences are discussed in terms of cognitive development and in relation to the decline in self-care and glycemic control often observed during adolescence. CONCLUSIONS: Respondents nominated many non-diabetes life domains, underscoring that QOL is multidimensional. Subtle changes in conceptualization of diabetes and health with increasing age may reflect cognitive development or disease adjustment, and speak to the need for special attention to adolescents. Understanding individual quality of life domains can help clinicians motivate their young patients with diabetes for self-care. Future research should employ a larger, more diverse sample, and use longitudinal designs.
Resumo:
Background. Despite the increasing attention to the effects of dietary factors on lung cancer risk, epidemiological research on the role of black/green tea and coffee intake and lung cancer risk is scarce. The purpose of this study was to explore the following three hypotheses: (1) the preventive (protective) effect from lung cancer is higher in green tea than in black tea and coffee consumption. (2) brewed tea (either black or green) daily drinkers have lower odds of lung cancer than non-drinkers of brewed tea (3) regular black and green tea have more preventive effect against lung cancer than decaffeinated teas due to the synergistic effect of caffeine and other tea components. ^ Methods. Data on 1,088 lung cancer cases and 1,127 controls from an ongoing epidemiological study of lung cancer by the Department of Epidemiology of the University of Texas M.D. Anderson Cancer were analyzed. Multiple logistic regressions were performed for testing associations between frequency of specific types of tea/coffee consumption and the risk of lung cancer. ^ Results. We observed that more than a cup a week of green tea and decaffeinated black tea were significantly associated with reduced odds of lung cancer by 64% for green tea (adjusted OR = 0.44; 95% CI = 0.31–0.64), 36% for decaffeinated black tea (OR = 0.64; 95% CI = 0.45–0.90), when compared with non-drinkers and those who drank less than a cup a week. On the other hand, increasing intake of regular coffee (more than 3 cups a day) was associated with a 30% higher odds ratio of lung cancer (OR = 1.30; 95% CI = 1.01–1.09). No association was found between regular black tea, decaffeinated coffee consumption and the odds ratio of lung cancer. However, when drinkers of other tea/coffee beverages were excluded from each model in order to explore the independent effect of each type of tea/coffee, green tea and decaffeinated black tea-lung cancer associations remained but no association was observed for drinkers of regular coffee. ^ Conclusion. We report the chemopreventive effects of more than a cup a week of green tea and decaffeinated black tea on lung cancer. ^
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
Samples recovered from Hole 504B during Leg 140 include a number of medium-grained, holocrystalline diabases that appear to represent the cores of thick dikes. The plagioclase and pyroxene in these samples occur in a variety of crystal morphologies. Plagioclase occurs as phenocrysts, microphenocrysts, elongate crystals, skeletal crystals, and branching radial clusters. Pyroxene occurs as phenocrysts, microphenocrysts, ophitic crystals, and poikilitic crystals. Plagioclase compositions became progressively poorer in anorthite and MgO and progressively richer in FeO as crystallization proceeded, while the average grain volume decreased and the aspect ratio of individual grains increased. Pyroxene compositions are largely independent of crystal morphology. The diabase dikes recovered from Hole 504B during Leg 140 appear to have crystallized in situ. Crystal compositions and morphologies are consistent with a rapid cooling rate and solidification times for individual dikes on the order of hours or days. The crystallization rate and nucleation rate of plagioclase lagged behind the cooling rate so that the degree of undercooling progressively increased as crystallization proceeded. Plagioclase crystal morphologies indicate much greater degrees of supersaturation than do pyroxene or olivine crystal morphologies. The 504B diabase magmas appear to have been emplaced with abundant preexisting pyroxene and olivine nuclei, but with few preexisting plagioclase nuclei. The suppression of plagioclase nucleation and crystallization relative to that of pyroxene and olivine could provide a mechanism by which the actual fractionation assemblage is more pyroxene-rich and plagioclase-poor than that predicted from thermodynamic models, or that observed in isothermal crystallization experiments.
Resumo:
In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESat's Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130,000 km**2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 +/- 10.1, 1.1 +/- 6.4, and 3.1 +/- 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.
Resumo:
Stubacher Sonnblickkees (SSK) is located in the Hohe Tauern Range (Eastern Alps) in the south of Salzburg Province (Austria) in the region of Oberpinzgau in the upper Stubach Valley. The glacier is situated at the main Alpine crest and faces east, starting at elevations close to 3050 m and in the 1980s terminated at 2500 m a.s.l. It had an area of 1.7 km² at that time, compared with 1 km² in 2013. The glacier type can be classified as a slope glacier, i.e. the relief is covered by a relatively thin ice sheet and there is no regular glacier tongue. The rough subglacial topography makes for a complex shape in the surface topography, with various concave and convex patterns. The main reason for selecting this glacier for mass balance observations (as early as 1963) was to verify on a complex glacier how the mass balance methods and the conclusions - derived during the more or less pioneer phase of glaciological investigations in the 1950s and 1960s - could be applied to the SSK glacier. The decision was influenced by the fact that close to the SSK there was the Rudolfshütte, a hostel of the Austrian Alpine Club (OeAV), newly constructed in the 1950s to replace the old hut dating from 1874. The new Alpenhotel Rudolfshütte, which was run by the Slupetzky family from 1958 to 1970, was the base station for the long-term observation; the cable car to Rudolfshütte, operated by the Austrian Federal Railways (ÖBB), was a logistic advantage. Another factor for choosing SSK as a glaciological research site was the availability of discharge records of the catchment area from the Austrian Federal Railways who had turned the nearby lake Weißsee ('White Lake') - a former natural lake - into a reservoir for their hydroelectric power plants. In terms of regional climatic differences between the Central Alps in Tyrol and those of the Hohe Tauern, the latter experienced significantly higher precipitation , so one could expect new insights in the different response of the two glaciers SSK and Hintereisferner (Ötztal Alps) - where a mass balance series went back to 1952. In 1966 another mass balance series with an additional focus on runoff recordings was initiated at Vernagtfener, near Hintereisferner, by the Commission of the Bavarian Academy of Sciences in Munich. The usual and necessary link to climate and climate change was given by a newly founded weather station (by Heinz and Werner Slupetzky) at the Rudolfshütte in 1961, which ran until 1967. Along with an extension and enlargement to the so-called Alpine Center Rudolfshütte of the OeAV, a climate observatory (suggested by Heinz Slupetzky) has been operating without interruption since 1980 under the responsibility of ZAMG and the Hydrological Service of Salzburg, providing long-term met observations. The weather station is supported by the Berghotel Rudolfshütte (in 2004 the OeAV sold the hotel to a private owner) with accommodation and facilities. Direct yearly mass balance measurements were started in 1963, first for 3 years as part of a thesis project. In 1965 the project was incorporated into the Austrian glacier measurement sites within the International Hydrological Decade (IHD) 1965 - 1974 and was afterwards extended via the International Hydrological Program (IHP) 1975 - 1981. During both periods the main financial support came from the Hydrological Survey of Austria. After 1981 funds were provided by the Hydrological Service of the Federal Government of Salzburg. The research was conducted from 1965 onwards by Heinz Slupetzky from the (former) Department of Geography of the University of Salzburg. These activities received better recognition when the High Alpine Research Station of the University of Salzburg was founded in 1982 and brought in additional funding from the University. With recent changes concerning Rudolfshütte, however, it became unfeasible to keep the research station going. Fortunately, at least the weather station at Rudolfshütte is still operating. In the pioneer years of the mass balance recordings at SSK, the main goal was to understand the influence of the complicated topography on the ablation and accumulation processes. With frequent strong southerly winds (foehn) on the one hand, and precipitation coming in with storms from the north to northwest, the snow drift is an important factor on the undulating glacier surface. This results in less snow cover in convex zones and in more or a maximum accumulation in concave or flat areas. As a consequence of the accentuated topography, certain characteristic ablation and accumulation patterns can be observed during the summer season every year, which have been regularly observed for many decades . The process of snow depletion (Ausaperung) runs through a series of stages (described by the AAR) every year. The sequence of stages until the end of the ablation season depends on the weather conditions in a balance year. One needs a strong negative mass balance year at the beginning of glacier measurements to find out the regularities; 1965, the second year of observation resulted in a very positive mass balance with very little ablation but heavy accumulation. To date it is the year with the absolute maximum positive balance in the entire mass balance series since 1959, probably since 1950. The highly complex ablation patterns required a high number of ablation stakes at the beginning of the research and it took several years to develop a clearer idea of the necessary density of measurement points to ensure high accuracy. A great number of snow pits and probing profiles (and additional measurements at crevasses) were necessary to map the accumulation area/patterns. Mapping the snow depletion, especially at the end of the ablation season, which coincides with the equilibrium line, is one of the main basic data for drawing contour lines of mass balance and to calculate the total mass balance (on a regular-shaped valley glacier there might be an equilibrium line following a contour line of elevation separating the accumulation area and the ablation area, but not at SSK). - An example: in 1969/70, 54 ablation stakes and 22 snow pits were used on the 1.77 km² glacier surface. In the course of the study the consistency of the accumulation and ablation patterns could be used to reduce the number of measurement points. - At the SSK the stratigraphic system, i.e. the natural balance year, is used instead the usual hydrological year. From 1964 to 1981, the yearly mass balance was calculated by direct measurements. Based on these records of 17 years, a regression analysis between the specific net mass balance and the ratio of ablation area to total area (AAR) has been used since then. The basic requirement was mapping the maximum snow depletion at the end of each balance year. There was the advantage of Heinz Slupetzky's detailed local and long-term experience, which ensured homogeneity of the series on individual influences of the mass balance calculations. Verifications took place as often as possible by means of independent geodetic methods, i.e. monoplotting , aerial and terrestrial photogrammetry, more recently also the application of PHOTOMODELLER and laser scans. The semi-direct mass balance determinations used at SSK were tentatively compared with data from periods of mass/volume change, resulting in promising first results on the reliability of the method. In recent years re-analyses of the mass balance series have been conducted by the World Glacier Monitoring Service and will be done at SSK too. - The methods developed at SSK also add to another objective, much discussed in the 1960s within the community, namely to achieve time- and labour-saving methods to ensure continuation of long-term mass balance series. The regression relations were used to extrapolate the mass balance series back to 1959, the maximum depletion could be reconstructed by means of photographs for those years. R. Günther (1982) calculated the mass balance series of SSK back to 1950 by analysing the correlation between meteorological data and the mass balance; he found a high statistical relation between measured and determined mass balance figures for SSK. In spite of the complex glacier topography, interesting empirical experiences were gained from the mass balance data sets, giving a better understanding of the characteristics of the glacier type, mass balance and mass exchange. It turned out that there are distinct relations between the specific net balance, net accumulation (defined as Bc/S) and net ablation (Ba/S) to the AAR, resulting in characteristic so-called 'turnover curves'. The diagram of SSK represents the type of a glacier without a glacier tongue. Between 1964 and 1966, a basic method was developed, starting from the idea that instead of measuring years to cover the range between extreme positive and extreme negative yearly balances one could record the AAR/snow depletion/Ausaperung during one or two summers. The new method was applied on Cathedral Massif Glacier, a cirque glacier with the same area as the Stubacher Sonnblickkees, in British Columbia, Canada. during the summers of 1977 and 1978. It returned exactly the expected relations, e.g. mass turnover curves, as found on SSK. The SSK was mapped several times on a scale of 1:5000 to 1:10000. Length variations have been measured since 1960 within the OeAV glacier length measurement programme. Between 1965 and 1981, there was a mass gain of 10 million cubic metres. With a time lag of 10 years, this resulted in an advance until the mid-1980s. Since 1982 there has been a distinct mass loss of 35 million cubic metres by 2013. In recent years, the glacier has disintegrated faster, forced by the formation of a periglacial lake at the glacier terminus and also by the outcrops of rocks (typical for the slope glacier type), which have accelerated the meltdown. The formation of this lake is well documented. The glacier has retreated by some 600 m since 1981. - Since August 2002, a runoff gauge installed by the Hydrographical Service of Salzburg has recorded the discharge of the main part of SSK at the outlet of the new Unterer Eisboden See. The annual reports - submitted from 1982 on as a contractual obligation to the Hydrological Service of Salzburg - document the ongoing processes on the one hand, and emphasize the mass balance of SSK and outline the climatological reasons, mainly based on the met-data of the observatory Rudolfshütte, on the other. There is an additional focus on estimating the annual water balance in the catchment area of the lake. There are certain preconditions for the water balance equation in the area. Runoff is recorded by the ÖBB power stations, the mass balance of the now approx. 20% glaciated area (mainly the Sonnblickkees) is measured andthe change of the snow and firn patches/the water content is estimated as well as possible. (Nowadays laserscanning and ground radar are available to measure the snow pack). There is a net of three precipitation gauges plus the recordings at Rudolfshütte. The evaporation is of minor importance. The long-term annual mean runoff depth in the catchment area is around 3.000 mm/year. The precipitation gauges have measured deficits between 10% and 35%, on average probably 25% to 30%. That means that the real precipitation in the catchment area Weißsee (at elevations between 2,250 and 3,000 m) is in an order of 3,200 to 3,400 mm a year. The mass balance record of SSK was the first one established in the Hohe Tauern region (and now since the Hohe Tauern National Park was founded in 1983 in Salzburg) and is one of the longest measurement series worldwide. Great efforts are under way to continue the series, to safeguard against interruption and to guarantee a long-term monitoring of the mass balance and volume change of SSK (until the glacier is completely gone, which seems to be realistic in the near future as a result of the ongoing global warming). Heinz Slupetzky, March 2014
Resumo:
The carbonate fraction of sediment core ODP 849, leg 138, located in the eastern equatorial Pacific, mostly consisting of coccoliths, was separated and analyzed for its Zn isotopic composition. The overall variation in Zn isotopic composition, as determined by multiple-collector, magnetic-sector, inductively coupled plasma mass spectrometry, was found to be on the order of 1? (expressed in delta66Zn, where deltaxZn=[(xZn/64Zn)sample/(xZn/64Zn)standard -1]*10**3 and x=66, 67 or 68) over the last 175 ka. The analytical precision was 0.04 per mil and the overall reproducibility was usually better than 0.07 per mil. The Zn isotopic composition signal exhibits several marked peaks and a high-frequency variability. A periodogram of the delta66Zn signal showed two periodicities of 35.2 and 21.2 ka. We suggest that the latter is caused by the precession of the Earth's axis of rotation. The periodogram exhibits a minimum at 41.1 ka, thus showing that the Zn isotopic composition is independent of the obliquity in the eastern equatorial Pacific. The range of delta66Zn values observed for the carbonate fraction of ODP 849 overlaps with the range observed for Fe-Mn nodules in the world's oceans, which suggests that seawater/carbonate Zn isotope fractionation is weak. We therefore assume that most of the Zn isotope variability is a result of the selective entrainment of the light isotopes by organic matter in the surface ocean. The ODP 849 delta66Zn record seems to follow the changes in the insolation cycles. Changes in the late summer/fall equatorial insolation modulate the intensity of the equatorial upwelling, hence the mixing between deep and surface waters. We propose that during decreased summer/fall equatorial insolation, when a steep thermocline can develop (El Niño-like conditions), the surface waters cannot be replenished by deep waters and become depleted in the lighter Zn isotopes by biological activity, thus resulting in the progressive increase of the delta66Zn values of the carbonate shells presumably in equilibrium with surface seawater.
Resumo:
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (d44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in d44/40Ca (~0.3 per mill) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between d44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 µmol/m**2/h, respectively. The lower d44/40Ca observed at 29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of d44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the d44/40Ca of the reservoir is constrained as -0.2 per mill relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on d44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.
Resumo:
We present two new algorithms which perform automatic parallelization via source-to-source transformations. The objective is to exploit goal-level, unrestricted independent and-parallelism. The proposed algorithms use as targets new parallel execution primitives which are simpler and more flexible than the well-known &/2 parallel operator. This makes it possible to genérate better parallel expressions by exposing more potential parallelism among the literals of a clause than is possible with &/2. The difference between the two algorithms stems from whether the order of the solutions obtained is preserved or not. We also report on a preliminary evaluation of an implementation of our approach. We compare the performance obtained to that of previous annotation algorithms and show that relevant improvements can be obtained.
Resumo:
We present new algorithms which perform automatic parallelization via source-to-source transformations. The objective is to exploit goal-level, unrestricted independent andparallelism. The proposed algorithms use as targets new parallel execution primitives which are simpler and more flexible than the well-known &/2 parallel operator, which makes it possible to generate better parallel expressions by exposing more potential parallelism among the literals of a clause than is possible with &/2. The main differences between the algorithms stem from whether the order of the solutions obtained is preserved or not, and on the use of determinacy information. We briefly describe the environment where the algorithms have been implemented and the runtime platform in which the parallelized programs are executed. We also report on an evaluation of an implementation of our approach. We compare the performance obtained to that of previous annotation algorithms and show that relevant improvements can be obtained.
Resumo:
Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.
Resumo:
El objetivo general de esta Tesis Doctoral fue evaluar nuevos sistemas de alojamiento y cría de conejos de granja, estudiando tanto parámetros comportamentales (experimento 1) como productivos y reproductivos (experimento 3). Además, se evaluaron diferentes técnicas de muestreo con el fin de optimizar el tiempo empleado para el estudio del comportamiento animal (experimento 2). En el experimento 1, se estudió el comportamiento de conejas alojadas en dos tipos de jaulas (TJ), convencionales vs. alternativas con una plataforma elevada, en distintos estados fisiológicos (EF), lactantes y gestantes. Se observó el comportamiento de 12 conejas reproductoras con grabaciones de una duración de 24 h continuas. Independientemente del EF y TJ, las conejas pasaron gran parte de su tiempo sobre el reposapatas (57,7 %, de media). Sin embargo, debido al uso de la plataforma (23,0% del tiempo, de media), las conejas lactantes permanecieron un 36,6 % menos de tiempo (P<0,001) sobre el reposapatas y las gestantes un 27,0% menos (P<0,001) sobre el enrejillado en jaulas alternativas que en convencionales. En las jaulas alternativas, las conejas podían adoptar la postura “levantada”, sin embargo ésta fue observada solamente en conejas gestantes una media de 4,6 veces al día. Las conejas bebieron con mas frecuencia en jaulas convencionales que en alternativas (24,6 vs 19,1 veces al día; P<0,05). Se observó una mayor duración y frecuencia del comportamiento “interactuando con compañeras” en conejas gestantes alojadas en jaulas convencionales (276 s/d y 4,6 veces/d; P<0,05). La frecuencia de “interactuando con gazapos” fue menor en jaulas alternativas que en convencionales (2,4 vs 8,6 veces al día; P<0,01). La hora del día afectó al comportamiento de las conejas, teniendo un comportamiento menos activo durante las horas centrales del día. Durante las horas de oscuridad, las conejas estuvieron más inquietas realizando comportamientos como ‘encabritarse’ o amamantar, coincidiendo éstos en el tiempo en el cual las conejas pasaron más tiempo en la plataforma. Las conejas utilizaron frecuentemente la plataforma, independientemente del estado fisiológico. En la fase de lactación, las conejas utilizaron la plataforma para huir de los intentos de mamar por parte de los gazapos cuando éstas no estaban receptivas. El uso de la plataforma puede dar lugar a problemas higiénicos debidos tanto por la acumulación de heces sobre ella como por la caída de heces y orina sobre los animales que están en la parte inferior. La ausencia de estereotipias por parte de las conejas tanto en jaulas alternativas como en convencionales no sugiere una falta de bienestar debida al sistema de alojamiento. En el experimento 2, se compararon distintos métodos de observación simplificada con respecto un método de referencia usando grabaciones continuas de 24 h para la evaluación del comportamiento de conejas en distintos estados fisiológicos (gestantes y lactantes) alojadas en dos tipos de jaulas (convencionales y alternativas). Se analizaron un total de 576 h de grabaciones continuas de 24 h en 12 conejas reproductoras al final del periodo de lactación y en las mismas conejas después del destete. Los comportamientos observados se clasificaron en tres categorías independientes (localización en la jaula, postura y comportamientos funcionales). Se utilizaron grabaciones continuas de 24 h como método de referencia para validar otros cuatro métodos de observación simplificados, utilizando grabaciones de distinta duración y frecuencia a lo largo del día. Métodos regulares: corto y largo con 2.4 y 8 h de observación respectivamente, y métodos irregulares: corto y largo con 6 y 8 h de observación, respectivamente. Como resultado, se observó que independientemente del sistema de alojamiento, el mejor método para reducir el tiempo de observación necesario para evaluar el comportamiento de conejas reproductoras depende del tipo de variable a estudiar y del estado fisiológico de las conejas. En gestantes, los métodos irregulares no fueron adecuados para estimar comportamientos de larga duración tales como tumbada, sentada, descansando y acicalándose. Sin embargo, en ambos estados fisiológicos, los métodos regulares fueron precisos para los comportamientos de los grupos localización y postura y para comportamientos funcionales de larga duración. Por otro lado, los coeficientes de variación de los comportamientos poco frecuentes realizados principalmente durante el periodo de oscuridad fueron muy altos, y el método irregular largo obtuvo los menores errores de estimación para éstos comportamientos. En el experimento 3, se estudió el efecto de un uso combinado de lactaciones largas (hasta 46 días) con jaulas alternativas sobre los parámetros productivos y reproductivos de 104 conejas y sus camadas durante cinco ciclos reproductivos. La mitad de las conejas fueron alojadas en jaulas polivalentes convencionales (39 cm x 100 cm x 30 cm) y la otra mitad en jaulas polivalentes alternativas (39 cm x 100 cm x 60 cm), con una plataforma elevada. Dentro de cada grupo de alojamiento, la mitad de las conejas se destetaron a 32 días y la otra mitad a 46 días tras el parto. Las lactaciones más largas afectaron negativamente al peso (P<0,001), contenido en grasa y energía (P<0,05) de las conejas al final del periodo de lactación, pero éste efecto disminuyó con el número de partos. La fertilidad, prolificidad y la mortalidad de las conejas no fue afectada por la duración de la lactación. El destete tardío dio lugar a un mayor tamaño y peso de la camada al final del periodo de crecimiento (8,9 y 11,3 %, respectivamente) y a un menor índice de conversión por jaula durante el todo el periodo experimental (13,5 %) con respecto al destete convencional (P<0,001). Éstos resultados fueron paralelos a la menor mortalidad global (12,6 vs 17,6 %; P<0,05) observada en gazapos con destete tardío. Las diferencias en los parámetros productivos con las distintas edades al destete sólo fueron observadas en los ciclos con peor estado sanitario (tercer y quinto ciclo), en los cuales el destete tardío redujo la mortalidad. El tipo de jaula no afectó al peso de la coneja, condición corporal, mortalidad, fertilidad ni tamaño de camada durante los cinco primeros ciclos reproductivos. Sin embargo, el peso de la camada y el índice de conversión a los 21 días de edad fueron 4,2% mayor (P<0,001) y 5,0% menor (P<0,005) en animales alojados en jaulas alternativas que en jaulas convencionales. A día 59 las jaulas alternativas dieron lugar a camadas más pesadas (P<0,01); sin embargo, éste efecto fue influenciado por la densidad alcanzada en cada ciclo, ya que cuando la densidad de los animales fue menor que 40kg/m2 (tercer y quinto ciclo), el efecto del tipo de jaula sobre el peso de la camada no fue significativo. De los resultados obtenidos se puede concluir que el uso combinado de lactaciones más largas y jaulas con mayor superficie disponible con una plataforma elevada podría ser una alternativa para mejorar el bienestar animal en determinadas situaciones productivas. ABSTRACT The general aim of this PhD Thesis was to evaluate new housing and husbandry systems of farmed rabbits, studying behavioral (experiment 1), productive and reproductive (experiment 3) parameters. Moreover, different sampling techniques were evaluated in order to optimize the assessment of rabbit behaviour (experiment 2). In experiment 1, the behaviour of rabbit does housed in two different types of cage (TC), conventional vs. alternative with an elevated platform, at different physiological stages (PS), lactation and gestation was to study. Behavioural observations were carried out on 12 commercial rabbit does using continuous 24 hour video recording. Independently of PS and TC, rabbit does spent most of their time on foot mats (57.7 %, as average). However, due to the use of platforms (23.0% of time, as average), lactating does spent 36.6% less time (P<0.001) on foot mats and gestating does spent 27.0% less (P<0.001) time on wire mesh in alternative cages than in conventional cages. Alternative cages allowed for standing posture but this behaviour was only observed in gestating does (4.6 times a day, as average). Frequency of drinking was higher in conventional than in alternative cages (24.6 vs. 19.1 times a day; P<0.05). Gestating does housed in conventional cages reached the highest duration and frequency of interacting with neighbours (276 s/d and 4.6 times/d; P<0.05). The frequency of interacting with kits was lower in alternative than in conventional cages (2.4 vs. 8.6 times a day; P<0.01). Does’ behaviour was influenced by hour of day, being less active at the midday hours. During dark hours rabbit does more frequently performed restless behaviour such as hyperactivity or nursing, matching the time at which rabbit does spent more time on the platform. The platform was frequently used by rabbit does, independent of their physiological state, and during late lactation phase, when mothers were not receptive to nursing, does housed in alternative cages used the platform as a mean to flee from kids trying to suckle. The use of the platform might lead to hygienic problems due to retained faeces on the platform and faeces and urine falling onto animals located in the lower part of the cage. Stereotypies were not observed in any housing system, therefore conventional cages do not suggest lack of animal welfare. In experiment 2, it was compared the results of different simplified sampling methods of behavioural data with respect to reference records of 24-h in order to assess rabbit does behaviours at different physiological stages (gestation and lactation) in animals housed in two types of cages (conventional and alternative). A total of 576 h of continuous video of 12 rabbit does at the end of lactation and on the same females after weaning were analysed. The behavioural observations were studied using three independent categories of classification (location in the cage, posture and functional behaviours). Continuous behavioural recordings of 24 h were considered as the reference method to validate another 4 sampling methods of data collection by aggregated video recordings of different frequency and duration (regular short and long methods with 2.4 and 8 h of observation respectively, and irregular short and long methods with 6 and 8 h of observation, respectively). The current results showed that, independently of housing system, the best method to reduce the total observation time required to assess rabbit does behaviour depends on the trait studied and physiological stage of does. In gestating does, irregular methods were not suitable to estimate behaviours of long duration such as lying, sitting, resting and grooming. However, in both physiological stages, regular methods were accurate for location behaviours, postures and functional behaviours of long duration. Instead, for the study of infrequent behaviours performed mainly during dark period, where coefficients of variation were high, the irregular long method led to the lowest mean estimation errors. In experiment 3, the effects of the combined use of long lactation periods (46 days) with alternative cages on the reproductive and growth performance of 104 rabbit does and their litters during five consecutive reproductive cycles were studied. Half of does were housed in conventional polyvalent cages (39 cm x 100 cm x 30 cm) and the other half in alternative polyvalent cages (39 cm x 100 cm x 60 cm), with a raised platform. Half of the rabbit does in each type of cages were weaned at 32 and the other half at 46 days after parturition. Longer lactations affected negatively to body weight (P<0.001), fat and energy content (P<0.05) of rabbit does at the end of the lactation period, but this effect decreased with the number of parturitions. Fertility, prolificacy and doe mortality were not affected by lactation length. Late weaning led to higher litter size (by 8.9 %) and litter weight (by 11.3 %) at the end of growing period and lower feed conversion ratio per cage during the overall experimental period (13.5 %) than standard weaning (P<0.001). These results were parallels to a lower mortality (12.6 vs 17.6 %; P<0.05) of young rabbit weaned later during the overall experimental period. Differences in performances at different weaning ages were only observed during cycles with worst health status (third and fifth cycles) in which late weaning decreased mortality. Type of cage did not affect doe body weight and body condition, mortality, fertility, prolificacy and litter size during the five firsts reproductive cycles. Nevertheless, at day 21 litter weight and feed conversion ratio were 4.2 % higher (P<0.001) and 5.0 % lower (P<0.005) in animals housed in alternative than in conventional cages. Alternative cages also led to heavier litters at 59 days (P<0.01); however, this effect was influenced by density reached in each cycle, as when the density of animals was lower than 40 kg/m2 (cycles three and five), the difference of litter weight between alternative and conventional cages was not significant. From the results obtained it can be concluded that the combined use of longer lactations and cages with higher available surface with a raised platform could be an alternative to improve animal welfare in some productive situations.
Resumo:
Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex.