955 resultados para Human androgen receptor gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed cerebrospinal fluid (CSF) samples from 65 consecutive children with acute lymphoblastic leukemia (ALL) treated according to two different treatment protocols (GBTLI-ALL-93 and -99) with no puncture accident for minimal residual disease (MRD) in the central nervous system (CNS). Minimal residual disease was detected by polymerase chain reaction (PCR) with homo/heteroduplex analysis using consensus primers to IgH and TCR genes. MRD in the CSF at diagnosis was detected by PCR in 46.8% of children with no puncture accident or morphological involvement. In patients treated with GBTLI-ALL-93 a significantly lower 5-year event-free survival (EFS) was demonstrated for those with CSF involvement, in univariate (p = 0.01) and multivariate (p = 0.04) analysis. This observation was not true for patients treated with the more intensive protocol GBTLI-ALL-99 (p = 0.81). These findings suggest that MRD detection in the CSF is a common event in children with ALL. Treatment intensification provided by the GBTLI-ALL-99 apparently overcomes the detrimental effect of CNS minimal residual disease at diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some mechanisms have been proposed to explain the role of bradykinin on glucose homeostasis and some studies reported that the BDKRB2 +9/-9 polymorphism was associated to the transcriptional activity of the receptor. In this scenario, the main aim of this study was to evaluate the association of the BDKRB2 +9/-9 polymorphism with diabetes mellitus risk in the Brazilian general population. This study included 1,032 subjects of the general urban population. Anthropometrical, blood pressure, biochemical, and genotype analyses for the BDKRB2 +9/-9 bp insertion/deletion polymorphism were performed. Individuals carrying +9/+9 or +9/-9 genotypes had higher glucose values (84.5 mg/dL versus 80.6 mg/dL, resp.) and higher frequency of diabetes mellitus (7.6% versus 3.6%, resp.) compared to individuals carrying -9/-9, adjusting for age and gender. In addition, higher diabetes mellitus risk was associated to presence of the +9/+9 or +9/-9 genotypes (OR = 1.91; 95% CI = 1.09-4.19; P = 0.03). Our data suggest that the BDKRB2 +9/-9 polymorphism may act as a genetic modulator of glucose homeostasis. It was previously associated to insulin sensitivity, glucose uptake, and insulin secretion, and, in this study, data suggest that the polymorphism may increase susceptibility to chronic metabolic conditions such as diabetes in the Brazilian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Approximately 40-60% of obsessive-compulsive disorder patients are nonresponsive to serotonin reuptake inhibitors. Genetic markers associated with treatment response remain largely unknown. We aimed (1) to investigate a possible association of serotonergic polymorphisms in obsessive-compulsive disorder patients and therapeutic response to selective serotonin reuptake inhibitors and (2) to examine the relationship between these polymorphisms and endocrine response to intravenous citalopram challenge in responders and non-responders to serotonin reuptake inhibitors and in healthy volunteers. METHODS: Patients with obsessive-compulsive disorder were classified as either responders or non-responders after long-term treatment with serotonin reuptake inhibitors, and both groups were compared with a control group of healthy volunteers. The investigated genetic markers were the G861C polymorphism of the serotonin receptor 1D beta gene and the T102C and C516T polymorphisms of the serotonin receptor subtype 2A gene. RESULTS: The T allele of the serotonin receptor subtype 2A T102C polymorphism was more frequent among obsessive-compulsive disorder patients (responders and non-responders) than in the controls (p<0.01). The CC genotype of the serotonin receptor subtype 2A C516T polymorphism was more frequent among the non-responders than in the responders (p<0.01). The CC genotype of the serotonin receptor subtype 1D beta G681C polymorphism was associated with higher cortisol and prolactin responses to citalopram (p<0.01 and p<0.001, respectively) and with a higher platelet-rich plasma serotonin concentration among the controls (p<0.05). However, this pattern was not observed in the non-responders with the same CC genotype after chronic treatment with serotonin reuptake inhibitors. This CC homozygosity was not observed in the responders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3 +/- 1.5 ng/ml was observed compared with 1.04 +/- 1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5 +/- 9.7 ng/ml and a higher growth hormone release of 163 +/- 46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a polyphenol-rich resinous substance extensively used to improve health and prevent diseases. The effects of polyphenols from different sources of propolis on atherosclerotic lesions and inflammatory and angiogenic factors were investigated in LDL receptor gene (LDLr-/-) knockout mice. The animals received a cholesterol-enriched diet to induce the initial atherosclerotic lesions (IALs) or advanced atherosclerotic lesions (AALs). The IAL or AAL animals were divided into three groups, each receiving polyphenols from either the green, red or brown propolis (250 mg/kg per day) by gavage. After 4 weeks of polyphenol treatment, the animals were sacrificed and their blood was collected for lipid profile analysis. The atheromatous lesions at the aortic root were also analyzed for gene expression of inflammatory and angiogenic factors by quantitative real-time polymerase chain reaction and immunohistochemistry. All three polyphenol extracts improved the lipid profile and decreased the atherosclerotic lesion area in IAL animals. However, only polyphenols from the red propolis induced favorable changes in the lipid profiles and reduced the lesion areas in AAL mice. In IAL groups. VCAM, MCP-1, FGF, PDGF, VEGF, PECAM and MMP-9 gene expression was down-regulated, while the metalloproteinase inhibitor TIMP-1 gene was up-regulated by all polyphenol extracts. In contrast, for advanced lesions, only the polyphenols from red propolis induced the down-regulation of CD36 and the up-regulation of HO-1 and TIMP-1 when compared to polyphenols from the other two types of propolis. In conclusion, polyphenols from propolis, particularly red propolis, are able to reduce atherosclerotic lesions through mechanisms including the modulation of inflammatory and angiogenic factors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylmercury (MeHg) is an environmental pollutant that is highly toxic to the central nervous system. As its effects on male reproductive system are poorly understood, this study was carried out to analyse the effects of MeHg on the rat prostate. To evaluate the MeHg toxicity on ventral prostate, three groups of adult male Wistar rats received oral doses of 0.5, 1.0 and 3.0mg/kg MeHg, respectively, on a daily basis for 14days. A fourth group was used as a control. The prostate weight was decreased in rats treated orally with 0.5mg/kg MeHg compared to controls. Also, Hg concentration increased significantly in the prostate after treatments. There were reductions in serum testosterone levels and androgen receptor immunoreactivity in animals receiving 3.0mgMeHg/kg. The stereological data showed changes in the prostatic epithelial, stromal and luminal compartments which varied according to the different doses. Histopathological alterations, such as chronic inflammation, stratified epithelial hyperplasia and epithelial inflammatory reactive atypia, were observed in the 0.5mg/kg MeHg-treated group. Epithelial atrophy was observed in the 3.0mg/kg MeHg-treated group. In conclusion, the MeHg affects prostatic homoeostasis resulting in histopathological changes that may be relevant in the pathogenesis of prostatic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of antiandrogen exposure during the prepubertal period on reproductive development and reproductive competence in adults. Male rats were divided into two groups: flutamide, receiving 25 mg/kg/day of flutamide by oral gavage and control, receiving vehicle daily. Dosing continued from PND 21 to 44, and animals were killed on PND 50 or PND 75-80. The epididymis, prostate, vas deferens and seminal vesicle weights were lower in Flutamide group on PND 50, while on PND 80 only seminal vesicle weight was reduced. Fertility assessed by IUI revealed a decrease in the fertility potential in the flutamide-treated adults. Flutamide accelerated sperm transit time through the epididymis, impairing sperm motility and storage. A quantitative analysis of the cauda sperm membrane proteome revealed a few significant changes in protein expression. Thus, exposure to flutamide during the prepubertal period compromises the function of the epididymis along with epididymal sperm quality at adulthood. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods Twenty-four adult Wistar rats, 60 days old (+/- 250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. Results Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. RESULTS: In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. CONCLUSIONS: Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms