847 resultados para Hopping mechanism
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mirabegron is the first β3-adrenoceptor (AR) agonist approved for treatment of overactive bladder syndrome (OAB). This study aimed to investigate the effects of β3-adrenoceptor (AR) agonist mirabegron in mouse urethra. The possibility that mirabegron exerts α1-AR antagonism was also tested in rat smooth muscle preparations presenting α1A- (vas deferens and prostate), α1D- (aorta) and α1B-AR (spleen). Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]Prazosin to membrane preparations of HEK 293 cells expressing each of the human α1-ARs, as well as β-AR mRNA expression and cyclic AMP measurements in mouse urethra were performed. Mirabegron produced concentration-dependent urethral relaxations that were right shifted by the selective β3-AR antagonist L 748,337, but unaffected by β1- and β2-AR antagonists (atenolol and ICI 118,551, respectively). Mirabegron-induced relaxations were enhanced by the phosphodiesterase-4 inhibitor rolipram, and this agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1-AR agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1-AR in urethra, vas deferens and prostate (α1A-AR, pA2 ≅ 5.6) and aorta (α1D-AR, pA2 ≅ 5.4), but not in spleen (α1B-AR). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A- and α1D-ARs (pKi ≅ 6.0). The effects of mirabegron in urethral smooth muscle are the result of β3-AR agonism together with α1A / α1D-AR antagonism.
Resumo:
Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient (high levels), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced turn-off activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Experimental etch/leach of Carboniferous Limestone gravels on a laboratory time-scale has demonstrated that 234U 238U activity ratios (AR's) greater than the radiochemical equilibrium value may be generated on short time-scales. The molar U/Ca and Mg/Ca ratios show that both U and Mg are leached preferentially relative to Ca whereas the molar U/Mg ratio is only slightly greater than that of the rock matrix. The generation of enhanced AR's is attributed to a two-stage process in which the limestone surface is dissolved by zero-order etch and silicate minerals so released are subjected to first-order chemical leach of U and Mg. The implications of these results for the production of enhanced AR's in Carboniferous Limestone groundwater are discussed. It is suggested that chemical leaching or exchange of U between groundwater and its particulate load or at the aquifer fluid-solid interface is an important mechanism controlling AR changes as groundwater migrates beyond a redox boundary. AR's for dissolved U in groundwater are more probably related to chemical equilibria than to groundwater age. © 1993.
Resumo:
Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.
Resumo:
Enhanced sympathetic outflow to the heart and resistance vessels greatly contributes to the onset and maintenance of neurogenic hypertension. There is a consensus that the development of hypertension (clinical and experimental) is associated with an impairment of sympathetic reflex control by arterial baroreceptors. More recently, chronic peripheral chemoreflex activation, as observed in obstructive sleep apnea, has been proposed as another important risk factor for hypertension. In this review, we present and discuss recent experimental evidence showing that changes in the respiratory pattern, elicited by chronic intermittent hypoxia, play a key role in increasing sympathetic activity and arterial pressure in rats. This concept parallels results observed in other models of neurogenic hypertension, such as spontaneously hypertensive rats and rats with angiotensin II–salt-induced hypertension, pointing out alterations in the central coupling of respiratory and sympathetic activities as a novel mechanism underlying the development of neurogenic hypertension.
Resumo:
By means of in situ IR spectroscopy we investigate the effect of dissolved alkali cations on the electro-oxidation of ethylene glycol on platinum in alkaline media. The results revealed that the increase in the oxidation currents (Li(+) < Na(+) < K(+)) is reflected in the increase in the ratio between carbonate and oxalate produced.
Resumo:
Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Light-emitting electrochemical cells (LECs) made of electroluminescent polymers were studied by d.c. and transient current-voltage and luminance-voltage measurements to elucidate the operation mechanisms of this kind of device. The time and external voltage necessary to form electrical double layers (EDLs) at the electrode interfaces could be determined from the results. In the low-and intermediate-voltage ranges (below 1.1 V), the ionic transport and the electronic diffusion dominate the current, being the device operation better described by an electrodynamic model. For higher voltages, electrochemical doping occurs, giving rise to the formation of a p-i-n junction, according to an electrochemical doping model. Copyright (C) EPLA, 2012
Resumo:
The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
Studies of consumer-resource interactions suggest that individual diet specialisation is empirically widespread and theoretically important to the organisation and dynamics of populations and communities. We used weighted networks to analyze the resource use by sea otters, testing three alternative models for how individual diet specialisation may arise. As expected, individual specialisation was absent when otter density was low, but increased at high-otter density. A high-density emergence of nested resource-use networks was consistent with the model assuming individuals share preference ranks. However, a density-dependent emergence of a non-nested modular network for core resources was more consistent with the competitive refuge model. Individuals from different diet modules showed predictable variation in rank-order prey preferences and handling times of core resources, further supporting the competitive refuge model. Our findings support a hierarchical organisation of diet specialisation and suggest individual use of core and marginal resources may be driven by different selective pressures.
Resumo:
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.