993 resultados para Grew, Nehemiah, 1641-1712
Resumo:
A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.
Resumo:
Exam timetabling is one of the most important administrative activities that takes place in academic institutions. In this paper we present a critical discussion of the research on exam timetabling in the last decade or so. This last ten years has seen an increased level of attention on this important topic. There has been a range of significant contributions to the scientific literature both in terms of theoretical andpractical aspects. The main aim of this survey is to highlight the new trends and key research achievements that have been carried out in the last decade.We also aim to outline a range of relevant important research issues and challenges that have been generated by this body of work.
We first define the problem and review previous survey papers. Algorithmic approaches are then classified and discussed. These include early techniques (e.g. graph heuristics) and state-of-the-art approaches including meta-heuristics, constraint based methods, multi-criteria techniques, hybridisations, and recent new trends concerning neighbourhood structures, which are motivated by raising the generality of the approaches. Summarising tables are presented to provide an overall view of these techniques. We discuss some issues on decomposition techniques, system tools and languages, models and complexity. We also present and discuss some important issues which have come to light concerning the public benchmark exam timetabling data. Different versions of problem datasetswith the same name have been circulating in the scientific community in the last ten years which has generated a significant amount of confusion. We clarify the situation and present a re-naming of the widely studied datasets to avoid future confusion. We also highlight which research papershave dealt with which dataset. Finally, we draw upon our discussion of the literature to present a (non-exhaustive) range of potential future research directions and open issues in exam timetabling research.
Resumo:
Purpose: The purpose of this paper is to examine the extent and nature of greening the supply chain (SC) in the UK manufacturing sector; and the factors that influence the breadth and depth of this activity.
Design/methodology/approach: Based on the findings from a sample of manufacturing organisations drawn from the membership of The Chartered Institute for Purchasing and Supply. Data are collected using a questionnaire, piloted and pre-tested before distribution with responses from 60 manufacturing companies.
Findings: On average manufacturers perceive the greatest pressure to improve environmental performance through legislation and internal drivers (IDs). The least influential pressures are related to societal drivers and SC pressures from individual customers. Green supply chain management (GSCM) practices amongst this “average” group of UK manufacturing organisations are focusing on internal, higher risk, descriptive activities, rather than proactive, external engagement processes. Environmental attitude (EA) is a key predictor of GSCM activity and those organisations that have a progressive attitude are also operationally very active. EA shows some relationship to legislative drivers but other factors are also influential. Operational activity may also be moderated by organisational contingencies such as risk, size, and nationality.
Research limitations/implications: The main limitation to this paper is the relatively small manufacturing sample.
Practical implications: This paper presents a series of constructs that identify GSCM operational activities companies to benchmark themselves against. It suggests which factors are driving these operational changes and how industry contingencies may be influential.
Originality/value: This paper explores what is driving environmental behaviour amongst an “average” sample of manufacturers, what specific management practices take place and the relationships between them.
Keywords: Manufacturing industries, Environmental management, Supply chain management, Sustainable development, United Kingdom
Paper type: Research paper
Resumo:
Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior information about the corruption. We call the new approach the posterior union decision-based neural network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS, AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and occlusion. The new system has been compared to other approaches and has demonstrated improved performance.
Resumo:
Karaoke singing is a popular form of entertainment in several parts of the world. Since this genre of performance attracts amateurs, the singing often has artifacts related to scale, tempo, and synchrony. We have developed an approach to correct these artifacts using cross-modal multimedia streams information. We first perform adaptive sampling on the user's rendition and then use the original singer's rendition as well as the video caption highlighting information in order to correct the pitch, tempo and the loudness. A method of analogies has been employed to perform this correction. The basic idea is to manipulate the user's rendition in a manner to make it as similar as possible to the original singing. A pre-processing step of noise removal due to feedback and huffing also helps improve the quality of the user's audio. The results are described in the paper which shows the effectiveness of this multimedia approach.
Resumo:
Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.
Resumo:
Universities planning the provision of space for their teaching requirements need to do so in a fashion that reduces capital and maintenance costs whilst still providing a high-quality level of service. Space plans should aim to provide sufficient capacity without incurring excessive costs due to over-capacity. A simple measure used to estimate over-provision is utilisation. Essentially, the utilisation is the fraction of seats that are used in practice, or the ratio of demand to supply. However, studies usually find that utilisation is low, often only 20–40%, and this is suggestive of significant over-capacity.
Our previous work has provided methods to improve such space planning. They identify a critical level of utilisation as the highest level that can be achieved whilst still reliably satisfying the demand for places to allocate teaching events. In this paper, we extend this body of work to incorporate the notions of event-types and space-types. Teaching events have multiple ‘event-types’, such as lecture, tutorial, workshop, etc., and there are generally corresponding space-types. Matching the type of an event to a room of a corresponding space-type is generally desirable. However, realistically, allocation happens in a mixed space-type environment where teaching events of a given type are allocated to rooms of another space-type; e.g., tutorials will borrow lecture theatres or workshop rooms.
We propose a model and methodology to quantify the effects of space-type mixing and establish methods to search for better space-type profiles; where the term “space-type profile” refers to the relative numbers of each type of space. We give evidence that these methods have the potential to improve utilisation levels. Hence, the contribution of this paper is twofold. Firstly, we present informative studies of the effects of space-type mixing on utilisation, and critical utilisations. Secondly, we present straightforward though novel methods to determine better space-type profiles, and give an example in which the resulting profiles are indeed significantly improved.
Resumo:
A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.
Resumo:
In this paper, the compression of multispectral images is addressed. Such 3-D data are characterized by a high correlation across the spectral components. The efficiency of the state-of-the-art wavelet-based coder 3-D SPIHT is considered. Although the 3-D SPIHT algorithm provides the obvious way to process a multispectral image as a volumetric block and, consequently, maintain the attractive properties exhibited in 2-D (excellent performance, low complexity, and embeddedness of the bit-stream), its 3-D trees structure is shown to be not adequately suited for 3-D wavelet transformed (DWT) multispectral images. The fact that each parent has eight children in the 3-D structure considerably increases the list of insignificant sets (LIS) and the list of insignificant pixels (LIP) since the partitioning of any set produces eight subsets which will be processed similarly during the sorting pass. Thus, a significant portion from the overall bit-budget is wastedly spent to sort insignificant information. Through an investigation based on results analysis, we demonstrate that a straightforward 2-D SPIHT technique, when suitably adjusted to maintain the rate scalability and carried out in the 3-D DWT domain, overcomes this weakness. In addition, a new SPIHT-based scalable multispectral image compression algorithm is used in the initial iterations to exploit the redundancies within each group of two consecutive spectral bands. Numerical experiments on a number of multispectral images have shown that the proposed scheme provides significant improvements over related works.