Object tracking using SIFT features and mean shift


Autoria(s): Zhou, Huiyu; Yuan, Yuan; Shi, Chunmei
Data(s)

01/03/2009

Resumo

A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.

Identificador

http://pure.qub.ac.uk/portal/en/publications/object-tracking-using-sift-features-and-mean-shift(560631c2-3b7c-49a8-b36d-33111f0fa052).html

http://dx.doi.org/10.1016/j.cviu.2008.08.006

http://www.scopus.com/inward/record.url?scp=59349094120&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Zhou , H , Yuan , Y & Shi , C 2009 , ' Object tracking using SIFT features and mean shift ' Computer Vision and Image Understanding , vol 113 , no. 3 , pp. 345-352 . DOI: 10.1016/j.cviu.2008.08.006

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/1700/1712 #Software #/dk/atira/pure/subjectarea/asjc/1700/1707 #Computer Vision and Pattern Recognition #/dk/atira/pure/subjectarea/asjc/1700/1711 #Signal Processing
Tipo

article