926 resultados para Grain -- Machinery -- Safety measures
Resumo:
Evaluating the validity of formative variables has presented ongoing challenges for researchers. In this paper we use global criterion measures to compare and critically evaluate two alternative formative measures of System Quality. One model is based on the ISO-9126 software quality standard, and the other is based on a leading information systems research model. We find that despite both models having a strong provenance, many of the items appear to be non-significant in our study. We examine the implications of this by evaluating the quality of the criterion variables we used, and the performance of PLS when evaluating formative models with a large number of items. We find that our respondents had difficulty distinguishing between global criterion variables measuring different aspects of overall System Quality. Also, because formative indicators “compete with one another” in PLS, it may be difficult to develop a set of measures which are all significant for a complex formative construct with a broad scope and a large number of items. Overall, we suggest that there is cautious evidence that both sets of measures are valid and largely equivalent, although questions still remain about the measures, the use of criterion variables, and the use of PLS for this type of model evaluation.
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
All civil and private aircraft are required to comply with the airworthiness standards set by their national airworthiness authority and throughout their operational life must be in a condition of safe operation. Aviation accident data shows that over twenty percent of all fatal accidents in aviation are due to airworthiness issues, specifically aircraft mechanical failures. Ultimately it is the responsibility of each registered operator to ensure that their aircraft remain in a condition of safe operation, and this is done through both effective management of airworthiness activities and the effective program governance of safety outcomes. Typically, the projects within these airworthiness management programs are focused on acquiring, modifying and maintaining the aircraft as a capability supporting the business. Program governance provides the structure through which the goals and objectives of airworthiness programs are set along with the means of attaining them. Whilst the principal causes of failures in many programs can be traced to inadequate program governance, many of the failures in large scale projects can have their root causes in the organisational culture and more specifically in the organisational processes related to decision-making. This paper examines the primary theme of project and program based enterprises, and introduces a model for measuring organisational culture in airworthiness management programs using measures drawn from 211 respondents in Australian airline programs. The paper describes the theoretical perspectives applied to modifying an original model to specifically focus it on measuring the organisational culture of programs for managing airworthiness; identifying the most important factors needed to explain the relationship between the measures collected, and providing a description of the nature of these factors. The paper concludes by identifying a model that best describes the organisational culture data collected from seven airworthiness management programs.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
Shadow nations face particular problems in constructing competitive film industries. Shadow nations refer to nations whose relative competitiveness suffers from easy product substitutability by products initiated, produced and distributed by powerful actors, such as media conglomerates located in Hollywood. The dominant literature has so far neglected the developing policy recommendations for dealing explicitly with the challenges of shadow nations. This paper aims to develop and apply a normative model for the development of film industries in shadow nations. The model integrates insights from innovation system studies and place branding. The developed model is applied to the Australian film industry as Australia represents a typical shadow nation within the film industry.
Resumo:
Slow speed run-overs represent a major cause of injury and death among Australian children, with higher rates of incidents being reported in Queensland than in the remaining Australian states. Yet, little attention has been given to how caregivers develop their safety behaviour in and around the driveway setting. To address this gap, the current study aimed to develop a conceptual model of driveway child safety behaviours among caregivers of children aged five years or younger. Semi-structured interviews were conducted with 26 caregivers (25 females/1 male, mean age, 33.24 year) from rural and metropolitan Queensland. To enable a comparison and validation of findings from the driveway, the study analysed both driveway and domestic safety behaviours. Domestic safety behaviours were categorised and validated against driveway safety behaviours, uncovering a process of risk appraisal and safety behaviour that was applicable in both settings (the Safety System Model). However, noteworthy differences between the domestic and driveway setting were uncovered. Unlike in the domestic setting, driveway risks were perceived as shifting according the presence of moving vehicles, which resulted in inconsistent safety behaviours. While the findings require further validation, they have implications for the design and implementation of driveway run-over interventions.
Resumo:
On average, 560 fatal run-off-road crashes occur annually in Australia and 135 in New Zealand. In addition, there are more than 14,000 run-off-road crashes causing injuries each year across both countries. In rural areas, run-off-road casualty crashes constitute 50-60% of all casualty crashes. Their severity is particularly high with more than half of those involved sustaining fatal or serious injuries. This paper reviews the existing approach to roadside hazard risk assessment, selection of clear zones and hazard treatments. It proposes a modified approach to roadside safety evaluation and management. It is a methodology based on statistical modelling of run-off-road casualty crashes, and application of locally developed crash modification factors and severity indices. Clear zones, safety barriers and other roadside design/treatment options are evaluated with a view to minimise fatal and serious injuries – the key Safe System objective. The paper concludes with a practical demonstration of the proposed approach. The paper is based on findings from a four-year Austroads research project into improving roadside safety in the Safe System context.
Resumo:
BACKGROUND: Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. METHODS: A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in Brisbane, from January 1st 2003 to December 31st 2009. RESULTS: There was a statistically significant relationship between DTR and childhood asthma. The DTR effect on childhood asthma increased above a DTR of 10[degree sign]C. The effect of DTR on childhood asthma was the greatest for lag 0--9 days, with a 31% (95% confidence interval: 11% -- 58%) increase of emergency department admissions per 5[degree sign]C increment of DTR. Male children and children aged 5--9 years appeared to be more vulnerable to the DTR effect than others. CONCLUSIONS: Large DTR may trigger childhood asthma. Future measures to control and prevent childhood asthma should include taking temperature variability into account. More protective measures should be taken after a day of DTR above10[degree sign]C.
Resumo:
Large scale sugarcane bagasse storage in uncovered stockpiles has the potential to result in adverse impacts on the environment and surrounding communities through hazards associated with nuisance dust, groundwater seepage, spontaneous combustion and generation of contaminated leachates. Managing these hazards will assist in improved health and safety outcomes for factory staff and reduced potential environmental impacts on surrounding communities. Removal of the smaller fibres (pith) from bagasse prior to stockpiling reduced the dust number of bagasse by 50% and modelling suggests peak ground level PM10 dust emissions would reduce by 70%. Depithed bagasse has much lower water holding capacity (~43%) than whole bagasse. This experimental and modelling study investigated the physical properties of depithed and whole bagasse. Dust dispersion modelling was undertaken to determine the likely effects associated with storage of whole and depithed sugarcane bagasse.
Resumo:
Sustainability, safety and smartness are three key elements of a modern transportation system. This study illustrates various policy directions and initiatives of Singapore to address how its transportation system is progressing in light of these three components. Sustainability targets economical efficiency, environmental justice and social equity by including policies for integrating land use and transport planning, ensuring adequate transport supply measures, managing travel demand efficiently, and incorporating environment-friendly strategies. Safety initiatives of its transportation system aim to minimize injuries and incidents of all users including motorists, public transport commuters, pedestrians, and bicyclists. Smartness incorporates qualities like real time sensing, fast processing and decision making, and automated action-taking into its control, monitoring, information management and revenue collection systems. Various policy implications and technology applications along these three directions reveal that smart technologies facilitate implementation of policies promoting sustainability and safety. The Singapore experience could serve as a good reference for other cities in promoting a transportation system that is sustainable, safe and smart.
Resumo:
As a key department within a healthcare organisation, the operating room is a hazardous environment, where the consequences of errors are high, despite the relatively low rates of occurrence. Team performance in surgery is increasingly being considered crucial for a culture of safety. The aim of this study was to describe team communication and the ways it fostered or threatened safety culture in surgery. Ethnography was used, and involved a 6-month fieldwork period of observation and 19 interviews with 24 informants from nursing, anaesthesia and surgery. Data were collected during 2009 in the operating rooms of a tertiary care facility in Queensland, Australia. Through analysis of the textual data, three themes that exemplified teamwork culture in surgery were generated: ‘‘building shared understandings through open communication’’; ‘‘managing contextual stressors in a hierarchical environment’’ and ‘‘intermittent membership influences team performance’’. In creating a safety culture in a healthcare organisation, a team’s optimal performance relies on the open discussion of teamwork and team expectation, and significantly depends on how the organisational culture promotes such discussions.
Resumo:
Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
BACKGROUND: Studies have shown that nurse staffing levels, among many other factors in the hospital setting, contribute to adverse patient outcomes. Concerns about patient safety and quality of care have resulted in numerous studies being conducted to examine the relationship between nurse staffing levels and the incidence of adverse patient events in both general wards and intensive care units. AIM: The aim of this paper is to review literature published in the previous 10 years which examines the relationship between nurse staffing levels and the incidence of mortality and morbidity in adult intensive care unit patients. METHODS: A literature search from 2002 to 2011 using the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, and Australian digital thesis databases was undertaken. The keywords used were: intensive care; critical care; staffing; nurse staffing; understaffing; nurse-patient ratios; adverse outcomes; mortality; ventilator-associated pneumonia; ventilator-acquired pneumonia; infection; length of stay; pressure ulcer/injury; unplanned extubation; medication error; readmission; myocardial infarction; and renal failure. A total of 19 articles were included in the review. Outcomes of interest are patient mortality and morbidity, particularly infection and pressure ulcers. RESULTS: Most of the studies were observational in nature with variables obtained retrospectively from large hospital databases. Nurse staffing measures and patient outcomes varied widely across the studies. While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies concluded that a trend exists between increased nurse staffing levels and decreased adverse events. CONCLUSION: While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies demonstrated a trend between increased nurse staffing levels and decreased adverse patient outcomes in the intensive care unit which is consistent with previous literature. While further more robust research methodologies need to be tested in order to more confidently demonstrate this association and decrease the influence of the many other confounders to patient outcomes; this would be difficult to achieve in this field of research.
Resumo:
Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.