978 resultados para Flexural properties
Resumo:
An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.
Resumo:
Acetylcholinesterase (AChE) from Pisum sativum purified 28 fold showed two closely moving protein bands on polyacrylamide gel electrophoresis, both of which have AChE activity. AChE activity occurs in roots, stem and leaves, that in roots varying with age. Activity is optimal at pH 9 and at 30”. The energy of activation is 9.82 x lo3 J per mol and MW is greater than 200000. Although the enzyme can hydrolyze both choline and non-choline esters, it has greater affinity for acetylthiocholine (ATCh) and acetylcholine (ACh). ATCh inhibits the enzyme at higher concentrations and the K, is 0.2 mM with this as substrate. The enzyme is not as sensitive to Eserine as it is to Neostigmine. It is also inhibited by organophosphorus pesticides such as Fensulfothion, Parathion and Dimethoate. Treatment of the seeds with Fensulfothion [O, O-diethyl (p-methylsulfinylphenyl) phosphorothioate] affects growth and secondary root development. This might be explained by its inhibition of AChE and the consequent increase of endogenous levels of ACh.
Resumo:
Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed.
Resumo:
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200-600 degrees C temperature range, its cubic phase of 2-3 nm size. prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 degrees C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction. transmission electron microscopy, and UV-visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 degrees C annealed samples, under ultraviolet light excitation.
Resumo:
An inducible benzoate-4-hydroxylase has been partially purified from crude extracts of the mycelial felts of Aspergillus niger. This enzyme catalyzes the transformation of benzoate to p-hydroxybenzoate with equimolar consumption of NADPH and O2. It requires tetrahydropteridine as a prosthetic group. The optimum activity was found at pH 6.2 with a Km value at 30°C of 1.6 · 10−4 M for NADPH and 1.3 · 10−4 M for benzoate. Fe2+ (iron) is required for the enzyme activity. The enzyme is stabilized by the inclusion of benzoate, EDTA and glutathione in the extracting buffer. The enzyme is specific for benzoate as substrate. Sulfhydryl group(s) are essential for enzyme activity as indicated by p-chloromercuri-benzoate and N-ethylmaleimide inactivation. Benzoate-4-hydroxylase activity is decreased in the mycelial felts of Aspergillus niger grown in the presence of higher concentrations of benzoate. Maximum activity of the enzyme was observed at 36 h after inoculation.
Resumo:
Al-10.98 pct Si-4.9 pct Ni ternary eutectic alloy was unidirectionally solidified at growth rates from 1.39μm/sec to 6.95μm/sec. Binary Al-Ni and Al-Si eutectics prepared from the same purity metals were also solidified under similar conditions to characterize the growth conditions under the conditions of present study. NiAl3 phase appeared as fibers in the binary Al-Ni eutectic and silicon appeared as irregular plates in the binary Al-Si eutectic. However, in the ternary Al-Si-Ni eutectic alloy both NiAl3 and silicon phases appeared as irregular plates dispersed in α-Al phase, without any regular repctitive arrangement. The size and spacing of NiAl3 and Si platelets in cone shaped colonies decreased with an increase in the growth rate of the ternary eutectic. Examination of specimen quenched during unidirectional solidification indicated that the ternary eutectic grows with a non-planar interface with both Si and NiAl3 phases protruding into the liquid. It is concluded that it will be difficult to grow regular ternary eutectic structures even if only one phase has a high entropy of melting. The tensile strength and modulus of unidirectionally solidified Al-Si-Ni eutectic was lower than the chill cast alloys of the same composition, and decreased with a decrease in growth rate. Tensile modulus and strength of ternary Al-Si-Ni eutectic alloys was greater than binary Al-Si eutectic alloy under similar growth conditions, both in the chill cast and in unidirectionally solidified conditions.
Resumo:
The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.
Resumo:
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.
Resumo:
The ultimate flexural strength behavior of isolated square tapered and beam-slab reinforced footings are presented. Yield line solutions are developed for generalized contact pressure distributions and the influence of taper, beam size, fillet size, negative moment capacity, and contact pressure distribution on the collapse load is brought out. In beam-slab footings the optimum relative beam capacity required to make the beam rigid is indicated. Results of experimental investigations on footings resting on sand reveal that tapered (with isotropic as well as with alternative reinforcement patterns) and beam-slab footings exhibit superior structural behavior in terms of normalized first crack load, collapse load, relative rigidity, relative efficiency, and failure mechanism.
Resumo:
An NADP+-specific isocitrate dehydrogenase has been purified and characterized from Rhizobium meliloti. The enzyme showed Mn++ or Mg++ requirement. The apparent Km values were 2.00×10-5 m and 1.51×10-5 m for dl-isocitrate and NADP+, respectively. The enzyme was inhibited by ATP, to a lesser extent by ADP and AMP. agr-Ketoglutarate also inhibited the enzyme activity. Oxalacetate and glyoxylate together inhibited the enzyme activity. The inhibition was competitive. Studies with thiol inhibitors suggested that the enzyme contained a sulfhydryl group at or near the active site. The enzyme has an approximate molecular weight of 60 000. Fluorescence studies suggested that the enzyme contained tryptophan.
Resumo:
This paper deals with studies on the dilute solution properties of methyl methacrylate�acrylonitrile copolymer of 0.289 mole fraction (mf) of acrylonitrile composition. Mark�Houwink parameters for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethylformamide (DMF) and γ-butyrolactone (γ-BL). The solvent power is found to be in the order of MEK < MeCN < DMF < γ-BL at 30°C. Herein, probably for the first time, the steric factor for the copolymer is found to be lower than that for the parent homopolymers and the excess interaction parameter, �AB is found to be negative. This probably suggests that the units are compatible to each other.
Resumo:
Thin films of indium-tin oxide have been deposited by DC diode sputtering from an indium-tin alloy target in an argon, hydrogen and oxygen atmosphere. Films with sheet resistance of 11 ohms/square and 80% light transmission have been obtained. The effect of cathode composition and gas mixture on sheet resistance and optical transmission properties of the films have been studied.
Resumo:
The aggregation property of multiheaded surfactants has been investigated by constant pressure molecular dynamics (MD) simulation in aqueous medium. The model multiheaded surfactants contain more than one headgroup (x = 2, 3, and 4) for a single tail group. This increases the hydrophilic charge progressively over the hydrophobic tail which has dramatic consequences in the aggregation behavior. In particular, we have looked at the change in the aggregation property such as critical micellar concentration (cmc), aggregation number, and size of the micelles for the multiheaded surfactants in water. We find with increasing number of headgroups of the Multiheaded surfactants that the cmc values increase and the aggregation numbers as well as the size of the micelles decrease. These trends are in agreement with the experimental findings as reported earlier with x = 1, 2, and 3. We also predict the aggregation properties of multiheaded surfactant With four headgroups (x = 4) for which no experimental studies exist yet.