958 resultados para Fiber quality
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
The present work demonstrates a systematic approach for the synthesis of pure kesterite-phase Cu2ZnSnS4 (CZTS) nanocrystals with a uniform size distribution by a one-step, thioglycolic acid (TGA)-assisted hydrothermal route. The formation mechanism and the role of TGA in the formation of CZTS compound were thoroughly studied. It has been found that TGA interacted with Cu2+ to form Cu+ at the initial reaction stage and controlled the crystal-growth of CZTS nanocrystals during the hydrothermal reaction. The consequence of the reduction of Cu2+ to Cu+ led to the formation Cu2−xS nuclei, which acted as the crystal framework for the formation of CZTS compound. CZTS was formed by the diffusion of Zn2+ and Sn4+ cations to the lattice of Cu2−xS during the hydrothermal reaction. The as-synthesized CZTS nanocrystals exhibited strong light absorption over the range of wavelength beyond 1000 nm. The band gap of the material was determined to be 1.51 eV, which is optimal for application in photoelectric energy conversion device.
Resumo:
Process variability in pollutant build-up and wash-off generates inherent uncertainty that affects the outcomes of stormwater quality models. Poor characterisation of process variability constrains the accurate accounting of the uncertainty associated with pollutant processes. This acts as a significant limitation to effective decision making in relation to stormwater pollution mitigation. The study undertaken developed three theoretical scenarios based on research findings that variations in particle size fractions <150µm and >150µm during pollutant build-up and wash-off primarily determine the variability associated with these processes. These scenarios, which combine pollutant build-up and wash-off processes that takes place on a continuous timeline, are able to explain process variability under different field conditions. Given the variability characteristics of a specific build-up or wash-off event, the theoretical scenarios help to infer the variability characteristics of the associated pollutant process that follows. Mathematical formulation of the theoretical scenarios enables the incorporation of variability characteristics of pollutant build-up and wash-off processes in stormwater quality models. The research study outcomes will contribute to the quantitative assessment of uncertainty as an integral part of the interpretation of stormwater quality modelling outcomes.
Resumo:
Purpose Health service quality is an important determinant for health service satisfaction and behavioral intentions. The purpose of this paper is to investigate requirements of e‐health services and to develop a measurement model to analyze the construct of “perceived e‐health service quality.” Design/methodology/approach The paper adapts the C‐OAR‐SE procedure for scale development by Rossiter. The focal aspect is the “physician‐patient relationship” which forms the core dyad in the healthcare service provision. Several in‐depth interviews were conducted in Switzerland; first with six patients (as raters), followed by two experts of the healthcare system (as judges). Based on the results and an extensive literature research, the classification of object and attributes is developed for this model. Findings The construct e‐health service quality can be described as an abstract formative object and is operationalized with 13 items: accessibility, competence, information, usability/user friendliness, security, system integration, trust, individualization, empathy, ethical conduct, degree of performance, reliability, and ability to respond. Research limitations/implications Limitations include the number of interviews with patients and experts as well as critical issues associated with C‐OAR‐SE. More empirical research is needed to confirm the quality indicators of e‐health services. Practical implications Health care providers can utilize the results for the evaluation of their service quality. Practitioners can use the hierarchical structure to measure service quality at different levels. The model provides a diagnostic tool to identify poor and/or excellent performance with regard to the e‐service delivery. Originality/value The paper contributes to knowledge with regard to the measurement of e‐health quality and improves the understanding of how customers evaluate the quality of e‐health services.
Resumo:
Purpose The purpose of this paper is to explore the concept of service quality for settings where several customers are involved in the joint creation and consumption of a service. The approach is to provide first insights into the implications of a simultaneous multi‐customer integration on service quality. Design/methodology/approach This conceptual paper undertakes a thorough review of the relevant literature before developing a conceptual model regarding service co‐creation and service quality in customer groups. Findings Group service encounters must be set up carefully to account for the dynamics (social activity) in a customer group and skill set and capabilities (task activity) of each of the individual participants involved in a group service experience. Research limitations/implications Future research should undertake empirical studies to validate and/or modify the suggested model presented in this contribution. Practical implications Managers of service firms should be made aware of the implications and the underlying factors of group services in order to create and manage a group experience successfully. Particular attention should be given to those factors that can be influenced by service providers in managing encounters with multiple customers. Originality/value This article introduces a new conceptual approach for service encounters with groups of customers in a proposed service quality model. In particular, the paper focuses on integrating the impact of customers' co‐creation activities on service quality in a multiple‐actor model.
Resumo:
Purpose The purpose of this study is to compare quality perceptions of virtual servicescapes and physical service encounters among buyers and renters of real estate. Design/methodology/approach Qualitative data from a sample of 27 professionals engaged in higher education in the USA are gathered by recorded interview before being transcribed and imported into MAXQDA 2007 software for analytical coding. Findings Particular differences are found to exist between renters and buyers with regard to specific service attributes – for example, description of properties and type of visuals during the pre‐purchase stage, knowledge/experience and honest behavior of realtors during the service encounter stage and a continuous relationship with the realtor in the post‐encounter stage. Research limitations/implications Generalization of the results is limited because the study utilizes data from only one industry (real estate) and from only one demographic segment (professionals in higher education). Practical implications Real‐estate firms need to pay attention to both the training of agents and the design and content of their websites. Originality/value This paper contributes to knowledge regarding virtual servicescapes in professional services.
Resumo:
Purpose The purpose of this research is to examine the concept of “potential quality” – that is, a company's tangible search qualities (such as the physical servicescape and virtual servicescape) – within the context of the real‐estate industry in the USA. Design/methodology/approach This qualitative study collects data by conducting personal in‐depth interviews with 34 respondents who had been recent buyers or renters of property. The data are then coded and themed to identify quality dimensions relevant to this industry. Findings The results indicate that a buyer's perception of the overall service quality of real‐estate service consists of two components: the interaction with a realtor (process quality); and the virtual servicescape, especially the firm's website design and content (potential quality). The study concludes that existing scales (such as SERVQUAL and RESERV) fail to capture the tangible component of service quality sufficiently in the real‐estate industry. Research limitations/implications The study uses data from only one industry (real estate) and from only one demographic segment (professionals in higher education). Practical implications Service providers of intangible, high‐contact services must appreciate the importance of the virtual servicescape as a surrogate quality indicator that can help to reduce information asymmetries and consumers' uncertainty with regard to initiating a business relationship. Real estate firms need to pay attention to the training of agents and the design and content of their e‐service systems. Originality/value This study integrates potential quality, process quality, and outcome quality in a comprehensive proposed model. In particular, the study identifies “potential quality” as a combination of the attributes of the virtual service environment and the physical service environment.
Resumo:
Many consumer markets are now characterized by a high degree of market saturation and an increasing level of competition, in particular from retailer brands. Furthermore, consumers face an ever increasing level of product variety. For instance, about 30,000 new products in the fast moving consumer goods (FMCG) market have been launched in Germany in a single year representing about 600 products per week. The increasing number of consumer brands thus has led to a form of “brand inflation” in FMCG markets. In addition, the role of consumers in the marketplace has changed as well. Consumers are more price sensitive, they have higher expectations with regard to product quality and customer service, and they rely rather on word-of-mouth communication than on traditional advertising. In addition, it appears that consumers have become more critical with regard to the perception of brands. High levels of price competition have led to a decreasing level of brand awareness and increased switching intentions of brands. As a consequence, the role of customer loyalty has become an increasingly important topic for businesses in consumer markets.
Resumo:
Papua New Guinea (PNG) is facing what must seem like an insurmountable challenge to deliver quality healthcare servicesfor women living in both rural and urban areas. Glo bal governing bodies and donor agencies including WHO and UN have indicated that PNG does not have an appropriate health information system. Although there are some systems in place, to date, little research has been conducted on improving or resolving the data integrity and integration issues of the existing health information systems and automating the capture of women and newborns information in PNG. This current research study concentrates on the adoption of eHealth, as an innovative tool to strengthen the health information systems in PNG to meet WHO standards. The research targets maternal and child health focussing on child birth records asan exemplar...