973 resultados para Ferro-nickel melting slags
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
Elemental and Sr-Nd isotopic data on metatexites, diatexites, orthogneisses and charnockites from the central Ribeira Fold Belt indicate that they are LILE-enriched weakly peraluminous granodiorites. Harker and Th-Hf-La correlation trends suggest that these rocks represent a co-genetic sequence, whereas variations on CaO, MnO, Y and HREE for charnockites can be explained by garnet consumption during granulitic metamorphism. Similar REE patterns and isotopic results of epsilon(565)(Nd) = -5.4 to -7.3 and (87)Sr/(86)Sr(565) = 0.706-0.711 for metatexites, diatexites, orthogneisses and charnockites, as well as similar T(DM) ages between 2.0 and 1.5 Ga are consistent with evolution from a relatively homogeneous and enriched common crustal (metasedimentary) protolith. Results suggest a genetic link between metatexites, diatexites, orthogneisses and charnockites and a two-step process for charnockite development: (a) generation of the hydrated igneous protoliths by anatexis of metasedimentary rocks; (b) continuous high-grade metamorphism that transformed the ""S-type granitoids"" (leucosomes and diatexites) into orthogneisses and, as metamorphism and dehydration progressed, into charnockites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nickel, a component of stainless steels (SS) applied in orthopedic implants may cause allergic processes in human tissues P558 nickel free SS was studied to verify its viability as a substitute for stainless steel containing nickel Its performance is compared to ISO 5832-9 and F138 most used nowadays grades in implants fabrications, in minimum essential medium. MEM, at 37 degrees C. Potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and ""in vitro"" cytotoxicity were used as techniques. From the electrochemical point of view P558 SS is comparable to ISO 5832-9 SS in MEM It remains passivated until the transpassivation potential, above which generalized corrosion occurs F138 presents pitting corrosion at 370 mV/SCE. The cytotoxicity results showed that P558. ISO 5832-9 and F138 do not present cytotoxic character Therefore, these results suggest that P558 SS can be applied in orthopedic implants (C) 2010 Elsevier BV All rights reserved
Resumo:
The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the physical-chemical characterization and electrochemical behavior of a new nanomaterial formed by the addition of cadmium and cobalt atoms into the structure of nickel hydroxide nanoparticles, these ones synthesized by an easy sonochemical method. Particles of about 5 nm diameter were obtained and characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy. Different nickel hydroxide nanoparticles were immobilized onto transparent conducting substrates by using electrostatic layer-by-layer providing thin films at the nanoscale and the electrochemical behavior was investigated. The formation of a mixed hydroxide was corroborated by observation of very interesting properties as redox potential shifting to less positive potentials and high stability when submitted to long electrochemical cycling or high times of ultrasonic synthesis, suggesting practical applications. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
One method using a solid sampling device for the direct determination of Cr and Ni in fresh and used lubricating oils by graphite furnace atomic absorption spectrometry are proposed. The high organic content in the samples was minimized using a digestion step at 400 degrees C in combination with an oxidant mixture 1.0% (v v(-1)) HNO3+15% (v v(-1)) H2O2+0.1% (m v(-1)) Triton X-100 for the in situ digestion. The 3-field mode Zeeman-effect allowed the spectrometer calibration up to 5 ng of Cr and Ni. The quantification limits were 0.86 mu g g(-1) for Cr and 0.82 mg g(-1) for Ni, respectively. The analysis of reference materials showed no statistically significant difference between the recommended values and those obtained by the proposed methods.
Resumo:
Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.
Resumo:
Nickel catalysts with a load of 5 wt% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4, 8 and 14 mol% CaO, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and impedance spectroscopy (IS) and tested in the carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of CaO-ZrO(2) solid solutions. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the support composition. The electrical properties of the support have a proportional effect on the catalytic activities. Catalytic tests were done at 800 degrees C for 6 h and the composition of the gaseous products and the catalytic conversion depended on the CaO-ZrO(2) solid solution composition and its influence on supported NiO species. A direct relation was found between the variation in the electrical conductivity of the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2-Y2O3 and ZrO2-CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2-Y2O3 and ZrO2-CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H-2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions. (c) 2007 Published by Elsevier B.V.
Resumo:
Allvac 718 Plus and Haynes 282 are relatively new precipitation hardening nickel based superalloys with good high temperature mechanical properties. In addition, the weldability of these superalloys enhances easy fabrication. The combination of high temperature capabilities and superior weldability is unmatched by other precipitation hardening superalloys and linked to the amount of the γ’ hardening precipitates in the materials. Hence, it is these properties that make Allvac 718 Plus and Haynes 282 desirable in the manufacture of hot sections of aero engine components. Studies show that cast products are less weldable than wrought products. Segregation of elements in the cast results in inhomogeneous composition which consequently diminishes weldability. Segregation during solidification of the cast products results in dendritic microstructure with the segregating elements occupying interdendritic regions. These segregating elements are trapped in secondary phases present alongside γ matrix. Studies show that in Allvac 718Plus, the segregating phase is Laves while in Haynes 282 the segregating phase is not yet fully determined. Thus, the present study investigated the effects of homogenization heat treatments in eliminating segregation in cast Allvac 718 Plus and Haynes 282. Paramount to the study was the effect of different homogenization temperatures and dwell time in the removal of the segregating phases. Experimental methods used to both qualify and quantify the segregating phases included SEM, EDX analysis, manual point count and macro Vickers hardness tests. Main results show that there is a reduction in the segregating phases in both materials as homogenization proceeds hence a disappearance of the dendritic structure. In Allvac 718 Plus, plate like structures is observed to be closely associated with the Laves phase at low temperatures and dwell times. In addition, Nb is found to be segregating in the interdendritic areas. The expected trend of increase in Laves as a result of the dissolution of the plate like structures at the initial stage of homogenization is only detectable for few cases. In Haynes 282, white and grey phases are clearly distinguished and Mo is observed to be segregating in interdendritic areas.