739 resultados para FEMTOSECOND OPTICAL PULSES
Resumo:
We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.
Resumo:
We present recent results on femtosecond microfabrication of key components for integrated optics such as highly curved low-loss waveguides in glasses, depressed cladding waveguides in crystals. Details of microfabrication and characterisation are discussed. © 2009 Optical Society of America.
Resumo:
We report on the operational parameters that are required to fabricate buried, microstructured waveguides in a z-cut lithium niobate crystal by the method of direct femtosecond laser inscription using a highrepetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as −0.0127 have been achieved for individual modification tracks. The results pave the way for developing microstructured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.
Resumo:
As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE.
Resumo:
We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.
Resumo:
Long Period Gratings (LPG) in standard fibre have been manufactured with a sharply focused near infrared (NIR) femtosecond laser beam. Polarization splitting of the attenuation bands is strongly dependent upon the inscription power.
Resumo:
We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. © 2012 SPIE.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
Numerical optimization is performed of the 40-Gb/s dispersion-managed (DM) soliton transmission system with in-line synchronous intensity modulation. Stability of DM soliton transmission results from a combined action of dispersion, nonlinearity, in-line filtering, and modulation through effective periodic bandwidth management of carrier pulses. Therefore, analysis of the multiparametric problem is typically required. A two-stage time-saving numerical optimization procedure is applied. At the first step, the regions of the stable carrier propagation are determined using theoretical models available for DM solitons, and system parameters are optimized. At the second stage, full numerical simulations are undertaken in order to verify the tolerance of optimal transmission regimes. An approach developed demonstrates feasibility of error-free transmission over 20 000 km in a transmission line composed of standard fiber and dispersion compensation fiber at 40 Gb/s.
Resumo:
The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.
Resumo:
A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations. © 2007 Springer Science+Business Media, LLC.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.
Resumo:
The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.