959 resultados para Excited electronic state
Resumo:
Analytic functions have been obtained to represent the potential energy surfaces of C3 and HCN in their ground electronic states. These functions closely reproduce the available data on the energy, geometry, and force constants in all stable conformations, as well as data on the various dissociation products, and ab initio calculations of the energy at other conformations. The form of the resulting surfaces are portrayed in various ways and discussed briefly.
Resumo:
Some of the characteristics of high overtone spectra observed in the near infrared are discussed, particularly in relation to local mode effects, the increasing density of states, and the effect of inter-state resonances and intramolecular vibrational redistribution.
Resumo:
Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Aimed at creating a true photoswitchable energy transfer system, four dinuclear complexes containing ruthenium(II) and osmium(II) metal centers bridged by spiropyran-type linkers were designed and investigated. The bridge in its closed spiropyran form was shown to be a good insulator for energy transfer between the Ru-bpy donor and the Os-bpy acceptor (bpy = 2,2'-bipyridine). On the basis of properties of previously reported photochromic nitrospiropyrans substituted with a single polypyridine metal center, conversion of the bridge to the open merocyanine form was envisaged to result in efficient electronic energy transfer by a sequential ("hopping") mechanism. In contrast to the expectations, however, the studied closed-form dinuclear complexes remained stable independently of their photochemical or electrochemical activation. This difference in reactivity is attributed to the replacement of the nitro group by a second polypyridine metal center. We assume that these changes have fundamentally altered the excited-state and redox properties of the complexes, making the ring-opening pathways unavailable.
Resumo:
This article describes the analysis and interpretation of rovibrational spectra involving highly excited vibrational states in the molecule of HCN. The spectra were obtained by means of the vibrationally mediated photodissociation technique. Analysis of the spectra revealed four bands with Sigma-Sigma structures that, once fitted, provided the energies and rotational constants of four new, highly excited vibrational states in the region of the potential energy surface near and above 30 000 cm(-1). All the states could be identified with the help of a state-of-the-art variational calculation. Together with the states already observed in previous works, eight highly excited states have so far been identified in this region. (c) 2006 American Institute of Physics.
Resumo:
Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.
Resumo:
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.
Resumo:
In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.
Resumo:
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.
Resumo:
Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S-1 state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.
Resumo:
Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [OS3(CO)(10-) (AcPy-MV)](2+) (the clication AcPy-MV = Acpy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl) ethyl)] (PF6)(2)) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi* excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 12 in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*(+) unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi* orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi* excited state and decays biexponentially with lifetimes of 38 and 166 ps (1:2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi* excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 12+ results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os-3(CO)(10)(alpha-diimine-MV)](2+) (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV*+ is no longer feasible. Instead, the irradiation of reduced cluster 1(.)+ results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os-3(CO)(10)(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
The lowest absorption band of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)(3)(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, (MLCT)-M-3, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the v(CO) bands upon excitation (+70 cm(-1) for the A'(1) band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state v(CO) wavenumbers agree well with those calculated by DFT. The (MLCT)-M-3 state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand (3)n pi* excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi* system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a similar to 30 ps lifetime. The presence of an n pi* state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3 MLCT states seen in all d(6)-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest (MLCT)-M-3 states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the v(CO) IR bands (-6 cm(-1) for A'(1)) but a large downward shift of the v(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.
Resumo:
Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)(3) units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy (MLCT)-M-1 state followed by intersystem crossing to emitting (MLCT)-M-3 states, photoreactive (IL)-I-3 states are populated by an efficient energy-transfer process. The involvement of these (IL)-I-3 states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest (IL)-I-1 state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)(3) moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy (MLCT)-M-1 state. The photoreaction can only be triggered by optical population of the higher lying (IL)-I-1 excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest (MLCT)-M-3 state.