998 resultados para Envelope Function
MicroRNA-132 is a physiological regulator of hematopoietic stem cell function and B-cell development
Resumo:
MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.
Resumo:
More than thirty years after the discovery that Human Immunodeficiency Virus (HIV) was the causative agent of Acquired Immunodeficiency Syndrome (AIDS), the disease remains pandemic as long as no effective universal vaccine is found. Over 34 million individuals in the world are infected with the virus, and the vast majority of them have no access to the antiretroviral therapies that have largely reduced HIV to a chronic disease in the developed world. The first chapter of this thesis introduces the history of the virus. The key to the infectious mechanism of the virus lies in its envelope glycoprotein (Env), a trimeric spike on the viral surface that utilizes host T cell receptors for entry. Though HIV-1 Env is immunogenic, most infected patients do not mount an effective neutralizing antibody response against it. Broadly-neutralizing anti-Env antibodies (bNAbs) present in the serum of a minority of infected individuals are usually sufficient to prevent the progression to full blown AIDS. Thus, the molecular details of these bNAbs as well as the antibody-antigen interface are of prime interest for structural studies, as insight gained would contribute to the design of a more effective immunogen and potential vaccine candidate. The second chapter of this thesis describes the low-resolution crystal structure of one such antibody, 2G12 dimer, which targets a high mannose epitope on the surface of Env. Patients infected with HIV-2, a related virus with ~35% sequence identity in the Env region, can generally mount a robust antibody response sufficient for viral control for reasons still unknown. The final two chapters of this thesis focus on the first reported structural studies of HIV-2 Env, the molecular details of which may inform HIV-1 therapy and immunogen design.
Resumo:
As representatives of the most primitive of recent vertebrate groups, lampreys show fundamental differences in different features of organisation to the species of the remaining classes of vertebrates. The topical distinction between exocrine and endocrine pancreas is also considered among the morphological peculiarities of Petromyzontida. This study aims to contribute to a further explanation of this phenomenon. 50 brook lampreys were histologically examined.
Resumo:
This dissertation primarily describes chemical-scale studies of nicotinic acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity and allosteric modulation influences during receptor activation. Electrophysiology coupled with canonical and non-canonical amino acids mutagenesis is used to probe subtle changes in receptor function.
The first half of this dissertation focuses on differential agonist selectivity of α4β2-containing nAChRs. The α4β2 nAChR can assemble in alternative stoichiometries as well as assemble with other accessory subunits. Chapter 2 identifies key structural residues that dictate binding and activation of three stoichiometry-dependent α4β2 receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the complementary subunit strongly influence binding ability of a ligand and receptor activation. Chapter 3 involves isolation of a α5α4β2 receptor-enriched population to test for a potential alternative agonist binding location at the α5 α4 interface. Results strongly suggest that agonist occupation of this site is not necessary for receptor activation and that the α5 subunit only incorporates at the accessory subunit location.
The second half of this dissertation seeks to identify residue interactions with positive allosteric modulators (PAMs) of the α7 nAChR. Chapter 4 focuses on methods development to study loss of potentiation of Type I PAMs, which indicate residues vital to propagation of PAM effects and/or binding. Chapter 5 investigates α7 receptor modulation by a Type II PAM (PNU 120596). These results show that PNU 120596 does not alter the agonist binding site, thus is relegated to influencing only the gating component of activation. From this, we were able to map a potential network of residues from the agonist binding site to the proposed PNU 120596 binding site that are essential for receptor potentiation.
Resumo:
Recently, the amino acid sequences have been reported for several proteins, including the envelope glycoproteins of Sindbis virus, which all probably span the plasma membrane with a common topology: a large N-terminal, extracellular portion, a short region buried in the bilayer, and a short C-terminal intracellular segment. The regions of these proteins buried in the bilayer correspond to portions of the protein sequences which contain a stretch of hydrophobic amino acids and which have other common characteristics, as discussed. Reasons are also described for uncertainty, in some proteins more than others, as to the precise location of some parts of the sequence relative to the membrane.
The signal hypothesis for the transmembrane translocation of proteins is briefly described and its general applicability is reviewed. There are many proteins whose translocation is accurately described by this hypothesis, but some proteins are translocated in a different manner.
The transmembraneous glycoproteins E1 and E2 of Sindbis virus, as well as the only other virion protein, the capsid protein, were purified in amounts sufficient for biochemical analysis using sensitive techniques. The amino acid composition of each protein was determined, and extensive N-terminal sequences were obtained for E1 and E2. By these techniques E1 and E2 are indistinguishable from most water soluble proteins, as they do not contain an obvious excess of hydrophobic amino acids in their N-terminal regions or in the intact molecule.
The capsid protein was found to be blocked, and so its N-terminus could not be sequenced by the usual methods. However, with the use of a special labeling technique, it was possible to incorporate tritiated acetate into the N-terminus of the protein with good specificity, which was useful in the purification of peptides from which the first amino acids in the N-terminal sequence could be identified.
Nanomole amounts of PE2, the intracellular precursor of E2, were purified by an immuno-affinity technique, and its N-terminus was analyzed. Together with other work, these results showed that PE2 is not synthesized with an N-terminal extension, and the signal sequence for translocation is probably the N-terminal amino acid sequence of the protein. This N-terminus was found to be 80-90% blocked, also by Nacetylation, and this acetylation did not affect its function as a signal sequence. The putative signal sequence was also found to contain a glycosylated asparagine residue, but the inhibition of this glycosylation did not lead to the cleavage of the sequence.
Resumo:
A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.
Resumo:
A method of computing the ambiguity function (AF) for a circularly symmetric pupil function is presented. The AFs of a clear aperture and two shaded apertures are considered in detail and an explicit expression for the first of these AFs is given. We explain these results in the context of the well-known optical transfer function theory and show a primary application of these computations. A good analytic approximation is also introduced, providing an alternative method for calculating the AF, in a simpler way.
Resumo:
The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.
Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.
The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.
The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.
An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.
Resumo:
The problem of the representation of signal envelope is treated, motivated by the classical Hilbert representation in which the envelope is represented in terms of the received signal and its Hilbert transform. It is shown that the Hilbert representation is the proper one if the received signal is strictly bandlimited but that some other filter is more appropriate in the bandunlimited case. A specific alternative filter, the conjugate filter, is proposed and the overall envelope estimation error is evaluated to show that for a specific received signal power spectral density the proposed filter yields a lower envelope error than the Hilbert filter.
Resumo:
Studies on the dissociation of histones from chromatin by increasing concentrations of sodium deoxycholate (DOC) have shown that histrone II is removed at lowest concentrations of DOC, while slightly higher concentrations remove histones III and IV. Still higher concentrations remove histone I.
The complete separation of chromatin and 14C-DOC by sucrose sedimentation indicated that the binding of DOC to chromatin is readily and completely reversible.
The dissociation of histones from chromatin by increasing concentrations of related cholanic acids and some of their conjugated derivatives were studied. The results suggested that the driving force for the interaction between the cholanic acid anion and histones is the lowering of the activity coefficient of the cholanic acid anion which occurs when it is partially removed from solution by interaction with hydrophobic regions of the positively charged histones.
The role of histones in the structure of chromatin has been studied by comparing the effects of selective removal of histones from chromatin by increasing concentrations of DOC with those caused by NaCl (removes histone I at lowest concentrations, while higher concentrations remove histones II, III, and IV). Properties studied included thermal denaturation, sedimentation velocity, flow dichroism, relaxation times of molecules oriented in a flow field, and the irreversible disruption of a 130 S, cross-linked component of sheared chromatin. The data indicated that none of the structural or chemical parameters with which these properties are correlated show a dependence on the presence of one particular histone fraction.
The template activity (ability to prime a 0.2 M KC1 DNA-dependent RNA synthesis system catalyzed by E. coli RNA polymerase) increases from that of native chromatin (approximately 25 per cent of that pure DNA) to that of pure DNA in a fashion which shows a nearly linear relationship to the amount of histone coverage of the template. The precipitability of partially dehistonized chromatin samples in 0.15 M NaCl shows a large dependence on the presence of histone I.
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.