828 resultados para Drug Effects
Resumo:
Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.
Resumo:
BACKGROUND The sympathetic nervous system (SNS) is an important regulator of cardiovascular function. Activation of SNS plays an important role in the pathophysiology and the prognosis of cardiovascular diseases such as heart failure, acute coronary syndromes, arrhythmia, and possibly hypertension. Vasodilators such as adenosine and sodium nitroprusside are known to activate SNS via baroreflex mechanisms. Because vasodilators are widely used in the treatment of patients with cardiovascular diseases, the aim of the present study was to assess the influence of clinically used dosages of isosorbide dinitrate and captopril on sympathetic nerve activity at rest and during stimulatory maneuvers. METHODS AND RESULTS Twenty-eight healthy volunteers were included in this double-blind placebo-controlled study, and muscle sympathetic nerve activity (MSA; with microelectrodes in the peroneal nerve), blood pressure, heart rate, and neurohumoral parameters were measured before and 90 minutes after the oral administration of 40 mg isosorbide dinitrate or 6.25 mg captopril. Furthermore, a 3-minute mental stress test and a cold pressor test were performed before and 90 minutes after drug administration. Resting MSA did not change after captopril and decreased compared with placebo (P < .05 versus placebo), whereas isosorbide dinitrate led to a marked increase in MSA (P < .05). Systolic blood pressure was reduced by isosorbide dinitrate (P < .05), whereas captopril decreased diastolic blood pressure (P < .05). The increases in MSA, blood pressure, and heart rate during mental stress were comparable before and after drug administration regardless of the medication. During cold pressor test, MSA and systolic and diastolic blood pressures increased to the same degree independent of treatment, but after isosorbide dinitrate, the increase in MSA seemed to be less pronounced. Heart rate did not change during cold stimulation. Plasma renin activity increased after captopril and isosorbide dinitrate (P < .05), whereas placebo had no effect. Endothelin-1 increased after placebo and isosorbide dinitrate (P < .05) but not after captopril. CONCLUSIONS Thus, captopril suppressed MSA despite lowering of diastolic blood pressure but allowed normal adaptation of the SNS during mental or physical stress. In contrast, the nitrate strongly activated the SNS under baseline conditions. These findings demonstrate that vasodilators differentially interact with the SNS, which could be of importance in therapeutic strategies for the treatment of patients with cardiovascular diseases.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.
Resumo:
OBJECTIVES This study sought to study the efficacy and safety of newer-generation drug-eluting stents (DES) compared with bare-metal stents (BMS) in an appropriately powered population of patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND Among patients with STEMI, early generation DES improved efficacy but not safety compared with BMS. Newer-generation DES, everolimus-eluting stents, and biolimus A9-eluting stents, have been shown to improve clinical outcomes compared with early generation DES. METHODS Individual patient data for 2,665 STEMI patients enrolled in 2 large-scale randomized clinical trials comparing newer-generation DES with BMS were pooled: 1,326 patients received a newer-generation DES (everolimus-eluting stent or biolimus A9-eluting stent), whereas the remaining 1,329 patients received a BMS. Random-effects models were used to assess differences between the 2 groups for the device-oriented composite endpoint of cardiac death, target-vessel reinfarction, and target-lesion revascularization and the patient-oriented composite endpoint of all-cause death, any infarction, and any revascularization at 1 year. RESULTS Newer-generation DES substantially reduce the risk of the device-oriented composite endpoint compared with BMS at 1 year (relative risk [RR]: 0.58; 95% confidence interval [CI]: 0.43 to 0.79; p = 0.0004). Similarly, the risk of the patient-oriented composite endpoint was lower with newer-generation DES than BMS (RR: 0.78; 95% CI: 0.63 to 0.96; p = 0.02). Differences in favor of newer-generation DES were driven by both a lower risk of repeat revascularization of the target lesion (RR: 0.33; 95% CI: 0.20 to 0.52; p < 0.0001) and a lower risk of target-vessel infarction (RR: 0.36; 95% CI: 0.14 to 0.92; p = 0.03). Newer-generation DES also reduced the risk of definite stent thrombosis (RR: 0.35; 95% CI: 0.16 to 0.75; p = 0.006) compared with BMS. CONCLUSIONS Among patients with STEMI, newer-generation DES improve safety and efficacy compared with BMS throughout 1 year. It remains to be determined whether the differences in favor of newer-generation DES are sustained during long-term follow-up.
Resumo:
Antiarrhythmic drugs are used in at least 50% of patients who received an implantable cardioverter defibrillator (ICD). The potential indications for antiarrhythmic drug treatments in patients with an ICD are generally the following: reduction of the number of ventricular tachycardias (VTs) or episodes of ventricular fibrillation and therefore reduction of the number of ICD therapies, most importantly, the number of disabling ICD shocks. Accordingly, the quality of life should be improved and the battery life of the ICD extended. Moreover, antiarrhythmic drugs have the potential to increase the tachycardia cycle length to allow termination of VTs by antitachycardia pacing and reduction of the number of syncopes. In addition, supraventricular arrhythmias can be prevented or their rate controlled. Recently published or reported trials have shown the efficacy of amiodarone, sotalol and azimilide to significantly reduce the number of appropriate and inappropriate ICD shocks in patients with structural heart disease. However, the use of antiarrhythmic drugs may also have adverse effects: an increase in the defibrillation threshold, an excessive increase in the VT cycle length leading to detection failure. In this situation and when antiarrhythmic drugs are ineffective or have to be stopped because of serious side effects, catheter ablation of both monomorphic stable and pleomorphic and/or unstable VTs using modern electroanatomic mapping systems should be considered. The choice of antiarrhythmic drug treatment and the need for catheter ablation in ICD patients with frequent VTs should be individually tailored to specific clinical and electrophysiological features including the frequency, the rate, and the clinical presentation of the ventricular arrhythmia. Although VT mapping and ablation is becoming increasingly practical and efficacious, ablation of VT is mostly done as an adjunctive therapy in patients with structural heart disease and ICD experiencing multiple shocks, because the recurrence and especially the occurrence of "new" VTs after primarily successful ablation with time and disease progression have precluded a widespread use of catheter ablation as primary treatment.
Resumo:
OBJECTIVES Thoracic epidural analgesia (TEA) has been shown to inhibit detrusor activity in patients undergoing open renal surgery, resulting in clinically relevant post-void residuals. However, the impact of different epidural drug mixtures on urethral sphincter function is not completely elucidated. DESIGN Pooled analysis of an open observational study and a double-blind randomized trial. SETTING Single tertiary centre. SUBJECTS Twenty-eight women without lower urinary tract symptoms and post-void residual <100 mL, who underwent open renal surgery with TEA. METHODS Pooling results in three groups with different epidural regimens (7 with bupivacaine 0.125%, 8 with bupivacaine 0.125% and fentanyl 2 μg/mL, and 13 with bupivacaine 0.1% plus fentanyl 2 μg/mL and epinephrine 2 μg/mL). All women underwent urethral pressure measurements before TEA and during TEA 2-3 days postoperatively. All patients received a TEA placed at the insertion site interspace T 8-9. RESULTS Maximum urethral closure pressure at rest decreased significantly during TEA with bupivacaine alone (median 70 cm H2 O [interquartile range 66-76] to 43 [43-65], P = 0.031) and with bupivacaine/fentanyl/epinephrine (75 cm H2 O [68-78] to 56 [52-75], P = 0.028), whereas with bupivacaine/fentanyl, no significant change could be detected (74 [51-88] vs 67 [46-70], P = 0.156). In all groups, functional profile length at rest was not influenced during TEA. CONCLUSION TEA with bupivacaine and the addition of fentanyl and epinephrine appears to decrease maximum urethral closure pressure at rest in women. The addition of fentanyl alone to bupivacaine may reduce this effect. Thus, the TEA effect on urethral sphincter function seems to depend on the drug mixture administered.
Resumo:
PURPOSE Women with epilepsy apparently have a higher incidence of polycystic ovary syndrome (PCOS) than do women without epilepsy. Whether the underlying disease or the antiepileptic drug (AED) treatment is responsible for this increased risk is unknown, although clinical reports implicate valproic acid (VPA) as a potential cause. The steroidogenic enzymes 3beta HSDII (3beta-hydroxysteroid dehydrogenase) and P450c17 (17alpha-hydroxylase/17,20 lyase) are essential for C19 steroid biosynthesis, which is enhanced during adrenarche and in PCOS. METHODS To determine whether the AEDs VPA, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LYG) directly affect the activities of human 3beta HSDII and P450c17, we added them to yeast expressing human P450c17 or 3beta HSDII and assayed enzymatic activities in the microsomal fraction. RESULTS Concentrations of VPA < or = 10 mM had no effect on activities of P450c17; however, VPA inhibited 3beta HSDII activity starting at 0.3 mM (reference serum unbound concentration, 0.035-0.1 mM) with an IC50 of 10.1 mM. CBZ, TPM, and LTG did not influence 3beta HSDII or P450c17 activities at typical reference serum unbound concentrations, but did inhibit 3beta HSDII and P450c17 at concentrations >10-fold higher. CONCLUSIONS None of the tested AEDs influenced 3beta HSDII or P450c17 activities at concentrations normally used in AED therapy. However, VPA started to inhibit 3beta HSDII activity at concentrations 3 times above the typical reference serum unbound concentration. Because inhibition of 3beta HSDII activity will shift steroidogenesis toward C19 steroid production when P450c17 activities are unchanged, very high doses of VPA may promote C19 steroid biosynthesis, thus resembling PCOS. CBZ, TPM, and LTG influenced 3beta HSDII and P450c17 only at toxic concentrations.
Resumo:
Hypothesis and Objectives PEGylated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Secondly, visualization of the (real-time) therapeutic effects of tissue-Plasminogen Activator (t-PA) on pulmonary embolism (PE) was attempted. Materials and Methods Six rabbits (approximate 4 kg weight) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml, GE HealthCare, Princeton, NJ) at a dose of 1400 mgI per animal and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mgI/animal). Subsequently, five animals were injected with 2mg t-PA and imaging continued for up to 4 ½ hours. Results Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited non uniform opacification and rapid clearance post injection. Three out of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, Pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10–57%, mean 42%). One animal showed no response to t-PA. Conclusions Liposomal blood pool agents effectively identified acute PE without need for re-injection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections
Resumo:
The Pulmonary route has been traditionally used to treat diseases of the respiratory tract. However, important research within the last two decades have shown that in addition to treating local diseases, a wide range of systemic diseases can be treated by delivering drugs to the lungs. The recent FDA approval to market Exubera, an inhalable form of insulin developed by Pfizer, to treat Diabetes, may just be the stepping stone that the pharmaceutical industry needs to market other drugs to treat systemic diseases via the lungs. However, this technology still needs repeated drug doses to control glucose levels, as the inhaled drug is cleared rapidly. Technologies have been developed where inhaled particles are capable of controlled release of drug from the lungs. An important feature of these technologies is the large geometric size of the particles that makes it difficult for the lung macrophages to clear these particles, which results in longer residence times for the particles in the lungs. Owing to the porosity, these particles have lower densities making them deliverable to the deep lungs. However, no modulation of drug release can be achieved with these technologies when more drug release may be required. This additional requirement can only be assuaged by additional dosing of the drug formulation, which can have undesirable effects due to excess loading of excipients in the lungs. In an attempt to bring about modulation of release from long residence time particles, a novel concept was developed in our laboratory that has been termed as the Agglomerated Vesicle Technology (AVT). Liposomes with encapsulated drug were agglomerated using well known cross linking chemistries to form agglomerates in the micron sized range. The large particles exhibited aerodynamic sizes in the respirable size range with minimal damage to the particles upon nebulization. By breaking the cross links between the liposomes with a cleaving agent, it was anticipated that triggered release of drug from the AVT particles could be achieved. In vivo studies done in healthy rabbits showed that post-administration modulation of drug release is possible from the AVT particles after the introduction of the cleaving agent. This study has important implications for the future development of this technology, where the AVT particles can be made “sensitive” to the product of disease. It is envisaged that a single dose of AVT containing the appropriate drug when administered to the lungs would maintain drug levels at a controlled rate over an extended period of time. When the need for more drug arises, the product of the disease would trigger the AVT particles to release more drug as needed to control the condition, thus eliminating the need for repeated drug doses and improved compliance amongst patients.
Resumo:
BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.
Resumo:
BACKGROUND Pathology studies have shown delayed arterial healing in culprit lesions of patients with acute coronary syndrome (ACS) compared with stable coronary artery disease (CAD) after placement of drug-eluting stents (DES). It is unknown whether similar differences exist in-vivo during long-term follow-up. Using optical coherence tomography (OCT), we assessed differences in arterial healing between patients with ACS and stable CAD five years after DES implantation. METHODS AND RESULTS A total of 88 patients comprised of 53 ACS lesions with 7864 struts and 35 stable lesions with 5298 struts were suitable for final OCT analysis five years after DES implantation. The analytical approach was based on a hierarchical Bayesian random-effects model. OCT endpoints were strut coverage, malapposition, protrusion, evaginations and cluster formation. Uncovered (1.7% vs. 0.7%, adjusted p=0.041) or protruding struts (0.50% vs. 0.13%, adjusted p=0.038) were more frequent among ACS compared with stable CAD lesions. A similar trend was observed for malapposed struts (1.33% vs. 0.45%, adj. p=0.072). Clusters of uncovered or malapposed/protruding struts were present in 34.0% of ACS and 14.1% of stable patients (adj. p=0.041). Coronary evaginations were more frequent in patients with ST-elevation myocardial infarction compared with stable CAD patients (0.16 vs. 0.13 per cross section, p=0.027). CONCLUSION Uncovered, malapposed, and protruding stent struts as well as clusters of delayed healing may be more frequent in culprit lesions of ACS compared with stable CAD patients late after DES implantation. Our observational findings suggest a differential healing response attributable to lesion characteristics of patients with ACS compared with stable CAD in-vivo.
Resumo:
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Resumo:
Anxiety and depression are the most frequently diagnosed psychological diseases showing a high co-morbidity. They have a severe impact on the lives of the persons concerned. Many meta-analytical studies suggested a positive anxiolytic and depression reducing effect of exercise programs. The aim of the present article is to synthesize metaanalyses on the effects of exercise on anxiety and depression and to describe average effect sizes. For this purpose 37 meta-analyses were included reporting 50 effect sizes for anxiety scores of 42,264 participants and depression scores of 48,207 persons. The average documented anxiolytic effect of exercise in these reviews was small, 0.34. In contrast, the effect of exercise on depression was significantly higher and at a moderate level, 0.56. Data of randomized controlled trials suggest higher sizes for the effect of exercise on anxiety and depression leading to increases up to moderate and large effects, respectively. Additionally, exercise seems to be more beneficial for patients compared to participants within a nonclinical, normal range of psychological disease. Especially for the effect of exercise on anxiety, more high quality meta-analyses of randomized controlled trials are needed. Finally, possible neurobiological explanations are suggested for the positive effect of exercise on psychological disorders like anxiety and depression.
Resumo:
Both, psychosocial stress and exercise in the past have been used as stressors to elevate saliva cortisol and change state anxiety levels. In the present study, high-school students at the age of 14 were randomly assigned to three experimental groups: (1) an exercise group (n = 18), that was running 15 minutes at a medium intensity level of 65-75% HRmax, (2) a psychosocial stress group (n = 19), and (3) a control group (n = 18). The psychosocial stress was induced to the students by completing a standardized intelligence test under the assumption that their IQ scores would be made public in class. Results display that only psychosocial stress but not exercise was able to significantly increase cortisol levels but decreased cognitive state anxiety in adolescents. The psychosocial stress protocol applied here is proposed for use in future stress studies with children or adolescents in group settings, e.g., in school.
Resumo:
Gossypol, a binaphthalene compound, possesses male infertility effects. However, its mechanism of action and effects on somatic cells are not yet understood. The purpose of this study was to examine the effects of gossypol on mammalian cell growth and DNA replication, using tissue culture cells (HeLa) as an in vivo model.^ Gossypol inhibited DNA synthesis in HeLa cells at low doses, without affecting RNA or protein synthesis. This caused cells to accumulate in S phase without affecting cells in other phases of the cell cycle. The inhibition of DNA synthesis was both dose- and time-dependent. This irreversible block was associated with a decrease in HeLa plating efficiency. Gossypol did bind to DNA but did not measurably affect its ability to serve as a template for DNA polymerase $\alpha$, the major replicative enzyme. Only in the absence of serum could gossypol induce single-strand DNA breaks in HeLa cells; no DNA-DNA or DNA-protein crosslinks were formed.^ Gossypol exhibited dose-dependent inhibition of a number of eukaryotic and prokaryotic replicative DNA polymerases both in vitro and in vivo. This inhibition was kinetically non-competitive with respect to the DNA template and dNTP substrates. Both a filter binding assay and polyacrylamide gel electrophoresis were used to study gossypol binding to DNA polymerase. Inhibition resulted from drug binding to two adjacent amino acid residues on the enzyme. Binding was found to be irreversible and mediated through either non-covalent interactions or by Schiff's base formation between the aldehyde groups of gossypol and the $\varepsilon$-NH$\sb2$ groups of amino acid residues on the polymerase. Structure-function studies using eleven gossypol derivatives revealed that both aldehyde and hydroxyl groups function independently to effect inhibition of DNA polymerase and DNA replication. The activities of DNA polymerase $\beta$ and ribonucleotide reductase were also inhibited by increasing gossypol concentrations.^ These studies demonstrate that the gossypol-mediated inhibition of DNA replication is due in part to inhibition of key replicative enzymes, such as DNA polymerase $\alpha$. The study of DNA polymerase may serve as a model for the interaction of enzymes with gossypol, a drug which may prove useful as a chemotherapeutic agent. ^