865 resultados para Distributed Voids
Resumo:
DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS(Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.
Resumo:
The primary goal of this research is to design and develop an education technology to support learning in global operations management. The research implements a series of studies to determine the right balance among user requirements, learning methods and applied technologies, on a view of student-centred learning. This research is multidisciplinary by nature, involving topics from various disciplines such as global operations management, curriculum and contemporary learning theory, and computer aided learning. Innovative learning models that emphasise on technological implementation are employed and discussed throughout this research.
Resumo:
In this report we discuss the problem of combining spatially-distributed predictions from neural networks. An example of this problem is the prediction of a wind vector-field from remote-sensing data by combining bottom-up predictions (wind vector predictions on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task can be achieved using the scaled-likelihood method, which has been used by Morgan and Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling
Resumo:
The optimization of resource allocation in sparse networks with real variables is studied using methods of statistical physics. Efficient distributed algorithms are devised on the basis of insight gained from the analysis and are examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.