868 resultados para Discriminative avoidance task
Resumo:
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P > 0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P < 0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Resumo:
Meditation is a mental training, which involves attention and the ability to maintain focus on a particular object. In this study we have applied a specific attentional task to simply measure the performance of the participants with different levels of meditation experience, rather than evaluating meditation practice per se or task performance during meditation. Our objective was to evaluate the performance of regular meditators and non-meditators during an fMRI adapted Stroop Word-Colour Task (SWCT), which requires attention and impulse control, using a block design paradigm. We selected 20 right-handed regular meditators and 19 non-meditators matched for age, years of education and gender. Participants had to choose the colour (red, blue or green) of single words presented visually in three conditions: congruent, neutral and incongruent. Non-meditators showed greater activity than meditators in the right medial frontal, middle temporal, precentral and postcentral gyri and the lentiform nucleus during the incongruent conditions. No regions were more activated in meditators relative to non-meditators in the same comparison. Non-meditators showed an increased pattern of brain activation relative to regular meditators under the same behavioural performance level. This suggests that meditation training improves efficiency, possibly via improved sustained attention and impulse control. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The President of Brazil established an Interministerial Work Group in order to “evaluate the model of classification and valuation of disabilities used in Brazil and to define the elaboration and adoption of a unique model for all the country”. Eight Ministries and/or Secretaries participated in the discussion over a period of 10 months, concluding that a proposed model should be based on the United Nations Convention on the Rights of Person with Disabilities, the International Classification of Functioning, Disability and Health, and the ‘support theory’, and organizing a list of recommendations and necessary actions for a Classification, Evaluation and Certification Network with national coverage.
Resumo:
Abstract Background The present study examined absolute alpha power using quantitative electroencephalogram (qEEG) in bilateral temporal and parietal cortices in novice soldiers under the influence of methylphenidate (MPH) during the preparatory aiming period in a practical pistol-shooting task. We anticipated higher bi-hemispheric cortical activation in the preparatory period relative to pre-shot baseline in the methylphenidate group when compared with the control group because methylphenidate has been shown to enhance task-related cognitive functions. Methods Twenty healthy, novice soldiers were equally distributed in control (CG; n = 10) and MPH groups 10 mg (MG; n = 10) using a randomized, double blind design. Subjects performed a pistol-shooting task while electroencephalographic activity was acquired. Results We found main effects for group and practice blocks on behavioral measures, and interactions between group and phases on electroencephalographic measures for the electrodes T3, T4, P3 and P4. Regarding the behavioral measures, the MPH group demonstrated significantly poorer in shooting performance when compared with the control and, in addition, significant increases in the scores over practice blocks were found on both groups. In addition, regarding the electroencephalographic data, we observed a significant increase in alpha power over practice blocks, but alpha power was significantly lower for the MPH group when compared with the placebo group. Moreover, we observed a significant decrease in alpha power in electrodes T4 and P4 during PTM. Conclusion Although we found no correlation between behavioral and EEG data, our findings show that MPH did not prevent the learning of the task in healthy subjects. However, during the practice blocks (PBs) it also did not favor the performance when compared with control group performance. It seems that the CNS effects of MPH demanded an initial readjustment period of integrated operations relative to the sensorimotor system. In other words, MPH seems to provoke a period of initial instability due to a possible modulation in neural activity, which can be explained by lower levels of alpha power (i.e., higher cortical activity). However, after the end of the PB1 a new stabilization was established in neural circuits, due to repetition of the task, resulting higher cortical activity during the task. In conclusion, MPH group performance was not initially superior to that of the control group, but eventually exceeded it, albeit without achieving statistical significance.
Resumo:
Background: The Maternal-Child Pastoral is a volunteer-based community organization of the Dominican Republic that works with families to improve child survival and development. A program that promotes key practices of maternal and child care through meetings with pregnant women and home visits to promote child growth and development was designed and implemented. This study aims to evaluate the impact of the program on nutritional status indicators of children in the first two years of age. Methods: A quasi-experimental design was used, with groups paired according to a socioeconomic index, comparing eight geographical areas of intervention with eight control areas. The intervention was carried out by lay health volunteers. Mothers in the intervention areas received home visits each month and participated in a group activity held biweekly during pregnancy and monthly after birth. The primary outcomes were length and body mass index for age. Statistical analyses were based on linear and logistic regression models. Results: 196 children in the intervention group and 263 in the control group were evaluated. The intervention did not show statistically significant effects on length, but point estimates found were in the desired direction: mean difference 0.21 (95%CI −0.02; 0.44) for length-for-age Z-score and OR 0.50 (95%CI 0.22; 1.10) for stunting. Significant reductions of BMI-for-age Z-score (−0.31, 95%CI −0.49; -0.12) and of BMI-for-age > 85th percentile (0.43, 95%CI 0.23; 0.77) were observed. The intervention showed positive effects in some indicators of intermediary factors such as growth monitoring, health promotion activities, micronutrient supplementation, exclusive breastfeeding and complementary feeding. Conclusions: Despite finding effect measures pointing to effects in the desired direction related to malnutrition, we could only detect a reduction in the risk of overweight attributable to the intervention. The findings related to obesity prevention may be of interest in the context of the nutritional transition. Given the size of this study, the results are encouraging and we believe a larger study is warranted.
Resumo:
Abstract Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object.
Resumo:
Abstract Background The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/− 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses.
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.
Resumo:
This work investigated the effects of frequency and precision of feedback on the learning of a dual-motor task. One hundred and twenty adults were randomly assigned to six groups of different knowledge of results (KR), frequency (100%, 66% or 33%) and precision (specific or general) levels. In the stabilization phase, participants performed the dual task (combination of linear positioning and manual force control) with the provision of KR. Ten non-KR adaptation trials were performed for the same task, but with the introduction of an electromagnetic opposite traction force. The analysis showed a significant main effect for frequency of KR. The participants who received KR in 66% of the stabilization trials showed superior adaptation performance than those who received 100% or 33%. This finding reinforces that there is an optimal level of information, neither too high nor too low, for motor learning to be effective.
Resumo:
The effect produced by a warning stimulus(i) (WS) in reaction time (RT) tasks is commonly attributed to a facilitation of sensorimotor mechanisms by alertness. Recently, evidence was presented that this effect is also related to a proactive inhibition of motor control mechanisms. This inhibition would hinder responding to the WS instead of the target stimulus (TS). Some studies have shown that auditory WS produce a stronger facilitatory effect than visual WS. The present study investigated whether the former WS also produces a stronger inhibitory effect than the latter WS. In one session, the RTs to a visual target in two groups of volunteers were evaluated. In a second session, subjects reacted to the visual target both with (50% of the trials) and without (50% of the trials) a WS. During trials, when subjects received a WS, one group received a visual WS and the other group was presented with an auditory WS. In the first session, the mean RTs of the two groups did not differ significantly. In the second session, the mean RT of the two groups in the presence of the WS was shorter than in their absence. The mean RT in the absence of the auditory WS was significantly longer than the mean RT in the absence of the visual WS. Mean RTs did not differ significantly between the present conditions of the visual and auditory WS. The longer RTs of the auditory WS group as opposed to the visual WS group in the WS-absent trials suggest that auditory WS exert a stronger inhibitory influence on responsivity than visual WS.
Resumo:
Objectives The current study investigated to what extent task-specific practice can help reduce the adverse effects of high-pressure on performance in a simulated penalty kick task. Based on the assumption that practice attenuates the required attentional resources, it was hypothesized that task-specific practice would enhance resilience against high-pressure. Method Participants practiced a simulated penalty kick in which they had to move a lever to the side opposite to the goalkeeper's dive. The goalkeeper moved at different times before ball-contact. Design Before and after task-specific practice, participants were tested on the same task both under low- and high-pressure conditions. Results Before practice, performance of all participants worsened under high-pressure; however, whereas one group of participants merely required more time to correctly respond to the goalkeeper movement and showed a typical logistic relation between the percentage of correct responses and the time available to respond, a second group of participants showed a linear relationship between the percentage of correct responses and the time available to respond. This implies that they tended to make systematic errors for the shortest times available. Practice eliminated the debilitating effects of high-pressure in the former group, whereas in the latter group high-pressure continued to negatively affect performance. Conclusions Task-specific practice increased resilience to high-pressure. However, the effect was a function of how participants responded initially to high-pressure, that is, prior to practice. The results are discussed within the framework of attentional control theory (ACT).