916 resultados para Differentiation (Developmental psychology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial process of chlamydial development involves differentiation of the replicative reticulate body (RB) into the infectious elementary body (EB). We present experimental evidence to provide support for a contact-dependent hypothesis for explaining the trigger involved in differentiation. We recorded live-imaging of Chlamydia trachomatis-infected McCoy cells at key times during development and tracked the temporospatial trajectories of individual chlamydial particles. We found that movement of the particles is related to development. Early to mid-developmental stages involved slight wobbling of RBs. The average speed of particles increased sharply at 24 h postinfection (after the estimated onset of RB to EB differentiation). We also investigated a penicillin-supplemented culture containing EBs, RBs, and aberrantly enlarged, stressed chlamydiae. Near-immobile enlarged particles are consistent with their continued tethering to the chlamydial inclusion membrane (CIM). We found a significantly negative, nonlinear association between speed and size/type of particles, providing further support for the hypothesis that particles become untethered near the onset of RB to EB differentiation. This study establishes the relationship between the motion properties of the chlamydiae and developmental stages, whereby wobbling RBs gradually lose contact with the CIM, and RB detachment from the CIM is coincidental with the onset of late differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denaturation of extracellular matrix proteins exposes cryptic binding sites. It is hypothesized that binding of cell adhesion receptors to these cryptic binding sites regulates cellular behaviour during tissue repair and regeneration. To test this hypothesis, we quantify the adhesion of pre-osteoblastic cells to native (Col) and partially-denatured (pdCol) collagen I using single-cell force spectroscopy. During early stages of cell attachment (≤180 s) pre-osteoblasts (MC3T3-E1) adhered significantly stronger to pdCol compared to Col. RGD (Arg-Gly-Asp)-containing peptides suppressed this elevated cell adhesion. We show that the RGD-binding α5β1- and αv-integrins mediated pre-osteoblast adhesion to pdCol, but not to Col. On pdCol pre-osteoblasts had a higher focal adhesion kinase tyrosine-phosphorylation level that correlated with enhanced spreading and motility. Moreover, pre-osteoblasts cultured on pdCol showed a pronounced matrix mineralization activity. Our data suggest that partially-denatured collagen exposes RGD-motifs that trigger binding of α5β1- and αv-integrins. These integrins initiate cellular processes that stimulate osteoblast adhesion, spreading, motility and differentiation. Taken together, these quantitative insights reveal an approach for the development of alternative collagen I- based surfaces for tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous learning and development has become increasingly important in the information age. However, employees with limited formal education in lower status occupations may be disadvantaged in their opportunities for development, as their jobs tend to require more limited knowledge and skills. In mature age, such workers may be subject to cumulative disadvantage with respect to work related learning and development, as well as negative stereotyping. This thesis concerns work related learning and development from a lifespan development psychology perspective. Development across the lifespan is grounded in biocultural co-constructivism. That is, the reciprocal influences of the individual and environment produce change in the individual. Existing theories and models of adaptive development attempt to explain how developmental resources are allocated across the lifespan. These included the Meta- theory of Selective Optimisation with Compensation, Dual Process Model of Self Regulation, and Developmental Regulation via Optimisation and Primary and Secondary Control. These models were integrated to create the Model of Adaptive Development for Work Related Learning. The Learning and Development Survey (LDS) was constructed to measure the hypothesised processes of adaptive development for work related learning, which were individual goal selection, individual goal engagement, individual goal disengagement, organisational opportunities (selection and engagement), and organisational constraints. Data collection was undertaken in two phases: the pilot study and the main study. The objective of the pilot study was to test the LDS on a target population of 112 employees from a local government organisation. Exploratory factor analysis reduced the pilot version of the survey to 38 items encompassing eight constructs which covered the processes of the model of adaptive development for work related learning. In the main study, the Revised Learning and Development Survey (R-LDS) was administered to another group of 137 employees from the local government organisation, as well as 110 employees from a private healthcare organisation. The purpose of the main study was to validate the R-LDS on two different groups to provide evidence of stability, and compare survey scores according to age and occupational status to determine construct validity. Findings from the main study indicated that only four constructs of the R-LDS were stable, which were organisational opportunities – selection, individual goal engagement, organisational constraints – disengagement and organisational opportunities – engagement. In addition, MANOVA studies revealed that the demographic variables affected organisational opportunities and constraints in the workplace, although individual goal engagement was not influenced by age. The findings from the pilot and main study partially supported the model of adaptive development for work related learning. Given that only four factors displayed adequate reliability in terms of internal consistency and stability, the findings suggest that individual goal selection and individual goal disengagement are less relevant to work related learning and development. Some recent research which emerged during the course of the current study has suggested that individual goal selection and individual goal disengagement are more relevant when goal achievement is impeded by biological constraints such as ageing. However, correlations between the retained factors support the model of adaptive development for work related learning, and represent the role of biocultural co-constructivism in development. Individual goal engagement was positively correlated with both opportunity factors (selection and engagement), while organisational constraints – disengagement was negatively correlated with organisational opportunities – selection. Demographic findings indicated that higher occupational status was associated with more opportunities for development. Age was associated with fewer opportunities or greater constraints for development, especially for lower status workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints, may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation. Inhibition of the MAPK–ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast, which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone osteoblast metabolism via an ERK1/2 dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children with early and continuously treated phenylketonuria (ECT-PKU) remain at risk of developing executive function (EF) deficits. There is some evidence that a high phenylalanine to tyrosine ratio (phe:tyr) is more strongly associated with impaired EF development than high phenylalanine alone. This study examined EF in a sample of 11 adolescents against concurrent and historical levels of phenylalanine, phe:tyr, and tyrosine. Lifetime measures of phe:tyr were more strongly associated with EF than phenylalanine-only measures. Children with a lifetime phe:tyr less than 6 demonstrated normal EF, whereas children who had a lifetime phe:tyr above 6, on average, demonstrated clinically impaired EF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.