971 resultados para Different temperatures
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The results of the investigation on Solution Heat Treatment of Plasma Nitrided (SHTPN) precipitation-hardened steel 15-5PH are presented. The layers have been obtained by the plasma nitriding process followed by solution heat treatment at different temperatures. The influence of the solution heat treatment after nitriding on the dissolution process of the nitrided layer has been considered. The nitrided layers were studied by scanning electron microscopy, X-ray microanalysis (EDX), and X-Ray diffraction. Micro-hardness tests of the nitrided layers and solubilized nitrided layers have been carried out and interpreted by considering the processing conditions. It was found that high nitrogen austenitic cases could be obtained after SHTPN of martensitic precipitation-hardened steel (15-5PH). When Solution Heat Treatment (SHT) was performed at 1100 °C, some precipitates were observed. The amount of precipitates significantly reduced when the temperature increased. The EDX microanalysis indicated that the precipitate may be chromium niobium nitride. When the precipitation on the austenite phase occurred in small amount, the corrosion resistance increased in SHTPN specimens and the pit nucleation potential also increased. The best corrosion result occurred for SHT at 1200 °C.
Resumo:
Results of photoluminescence measurements for natural and synthetic alexandrite (BeAl2O4:Cr3+) are presented, where the samples are excited by the 488 nm line of an Ar+ laser, at different temperatures. The main issue is the analysis of the Cr3+ transition in the chrysoberyl matrix (BeAl2O4), with major technological application as active media for laser action. Results indicate anomalous behavior of Cr3+ transition depending on the measurement temperature. A simple model to explain the phenomena is suggested.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ananas erectifolius (curaua) is a fibrous vegetable that can be found in North and Central West regions of Brazil. It is a bromeliaceae family plant which physico-chemical features provides great potential in the automobilistic industry as a source of fibers. As commonly described in other bromeliaceae species, it contains significant levels of bromelain, of high commercial value and wide range of aplications in food, pharmaceutical and cosmetic industry. In this paper, experimental tests were performed to evaluate the extraction of the proteolytic enzymes of the Ananas erectifolius under different pH and temperature conditions to determine in which ones the enzymatic activity would be the maximum for later purification of the bromelain. The two commercially available curaua varieties (white and purple) were used in the experiments and the results showed the same optimal pH of 8,5 for both varieties and different temperatures of 30ºC for the white one, and 10ºC, 20ºC and 35ºC for the purple one.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.
Resumo:
In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 degrees C) than above the transition temperature (above 25 degrees C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitatiori is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.
Resumo:
This paper proposes a drain current model for triple-gate n-type junctionless nanowire transistors. The model is based on the solution of the Poisson equation. First, the 2-D Poisson equation is used to obtain the effective surface potential for long-channel devices, which is used to calculate the charge density along the channel and the drain current. The solution of the 3-D Laplace equation is added to the 2-D model in order to account for the short-channel effects. The proposed model is validated using 3-D TCAD simulations where the drain current and its derivatives, the potential, and the charge density have been compared, showing a good agreement for all parameters. Experimental data of short- channel devices down to 30 nm at different temperatures have been also used to validate the model.
Resumo:
(Isothermal seed germination of Adenanthera pavonina). This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 degrees C. The slope mu of the Arrhenius plot of the germination rates is positive for T < 35 degrees C and negative for T > 35 degrees C. The activation enthalpies, estimated from closely-spaced points, shows that vertical bar Delta H-vertical bar < 12 Cal mol(-1) occur for temperatures in the range between 25 degrees C and 40 degrees C. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.