712 resultados para Diarrhea incidenc
Resumo:
Publisher's press listings.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.
Resumo:
Diarrhea-causing Escherichia coli strains are responsible for numerous cases of gastrointestinal disease and constitute a serious health problem throughout the world. The ability to recognize and attach to host intestinal surfaces is an essential step in the pathogenesis of such strains. AIDA is a potent bacterial adhesin associated with some diarrheagenic E. coli strains. AIDA mediates bacterial attachment to a broad variety of human and other mammalian cells. It is a surface-displayed autotransporter protein and belongs to the selected group of bacterial glycoproteins; only the glycosylated form binds to mammalian cells. Here, we show that AIDA possesses self-association characteristics and can mediate autoaggregation of E. coli cells. We demonstrate that intercellular AIDA-AIDA interaction is responsible for bacterial autoaggregation. Interestingly, AIDA-expressing cells can interact with antigen 43 (Ag43) -expressing cells, which is indicative of an intercellular AIDA-Ag43 interaction. Additionally, AIDA expression dramatically enhances biofilm formation by E. coli on abiotic surfaces in How chambers.
Resumo:
Twelve dairy heifers were used to examine the clinical response of an alimentary oligofructose overload. Six animals were divided into 3 subgroups, and each was given a bolus dose of 13, 17, or 21 g/kg of oligofructose orally. The control group (n = 6) was sham-treated with tap water. Signs of lameness, cardiovascular function, and gastrointestinal function were monitored every 6 h during development of rumen acidosis. The heifers were euthanized 48 and 72 h after administration of oligofructose. All animals given oligofructose developed depression, anorexia, and diarrhea 9 to 39 h after receiving oligofructose. By 33 to 45 h after treatment, the feces returned to normal consistency and the heifers began eating again. Animals given oligofructose developed transient fever, severe metabolic acidosis, and moderate dehydration, which were alleviated by supportive therapy. Four of 6 animals given oligofructose displayed clinical signs of laminitis starting 39 to 45 h after receiving oligofructose and lasting until euthanasia. The lameness was obvious, but could easily be overlooked by the untrained eye, because the heifers continued to stand and walk, and did not interrupt their eating behavior. No positive pain reactions or lameness were seen in control animals. Based on these results, we conclude that an alimentary oligofructose overload is able to induce signs of acute laminitis in cattle. This model offers a new method, which can be used in further investigation of the pathogenesis and pathophysiology of bovine laminitis.
Resumo:
Objective: To evaluate the efficacy of Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea. Data Sources: A computer-based search of MED-LINE, CINAHL, AMED, the Cochrane Controlled Trials Register and the Cochrane Database of Systematic Reviews was conducted. A hand-search of the bibliographies of relevant papers and previous meta-analyses was undertaken. Review Methods: Trials were included in the review if they compared the effects of L. rhamnosus GG and placebo and listed diarrhoea as a primary end-point. Studies were excluded if they were not placebo-controlled or utilised other probiotic strains. Results:Six trials were found that met all eligibility requirements. Significant statistical heterogeneity of the trials precluded meta-analysis. Four of the six trials found a significant reduction in the risk of antibiotic-associated diarrhoea with co-administration of Lactobacillus GG. One of the trials found a reduced number of days with antibiotic-induced diarrhoea with Lactobacillus GG administration, whilst the final trial found no benefit of Lactobacillus GG supplementation. Conclusion: Additional research is needed to further clarify the effectiveness of Lactobacillus GG in the prevention of antibiotic-associated diarrhoea. Copyright (c) 2005 S. Karger AG, Basel.
Resumo:
This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effects of vitamin A supplementation, alone or in combination with other micronutrients (e.g. iron, folic acid, vitamin E), in mothers during the postpartum period, on maternal and infant health. Specific objectives are to compare the effects of vitamin A supplementation (alone or in combination with other micronutrients) with placebo or no supplementation on: 1. the duration and occurrence of maternal morbidity (xerophthalmia, infection) or illness symptoms (night blindness, fever, nausea, vomiting); 2. the duration and occurrence of neonatal or infant morbidity (respiratory tract infection, diarrhea, measles) or illness symptoms (fever, nausea, vomiting); 3. maternal serum retinol concentration; 4. infant serum retinol concentration; 5. breast milk retinol concentration; and 6. maternal satisfaction.
Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases
Resumo:
Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product fort-nation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E).(coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STh, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.
Resumo:
The contribution of enterotoxigenic Escherichia coli (ETEC) to pre-weaning diarrhoea was investigated over a 6 month period at five selected commercial piggeries (CPs) in north Vietnam with at least 100 sows each. Diarrhoea was found to affect 71(.)5% of the litters born during the period of study. Of 406 faecal specimens submitted for bacteriological culture, 200 (49(.)3%) yielded a heavy pure culture of E coli and 126(31 %)were confirmed by PCR to carry at least one of eight porcine ETEC virulence genes. ETEC was responsible for 43% of cases of diarrhoea in neonatal pigs during the first 4 days of life and 23(.)9% of the remaining cases up until the age of weaning. Pathotypes were determined by PCR for the 126 ETEC isolates together with 44 ETEC isolates obtained from village pigs (VPs) raised by smallholder farmers. The CP isolates belonged to five pathotypes, four of which were also identified in VP isolates. Haemolytic serogroup O149: K91 isolates that belonged to F4/STa/STb/LT were most commonly identified in both CPs (33 % of isolates) and VPs (45(.)5%). Other combinations identified in both production systems included O64 (F5/STa), O101 (F4/STa/STb) and O-nontypable (F-/STb). A high proportion of CP isolates (22(.)3 %) possessed all three enterotoxins (STa/STWLT), lacked the genes for all five tested fimbriae (F4, F5, F6, F41 and F18) and belonged to serogroup O8. These unusual 08 F- isolates were haemolytic and were isolated from all ages of diarrhoeic piglets at each CP, suggesting that they have pathogenic potential.
Resumo:
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.
Resumo:
Quality of life has been shown to be poor among people living with chronic hepatitis C However, it is not clear how this relates to the presence of symptoms and their severity. The aim of this study was to describe the typology of a broad array of symptoms that were attributed to hepatitis C virus (HCV) infection. Phase I used qualitative methods to identify symptoms. In Phase 2, 188 treatment-naive people living with HCV participated in a quantitative survey. The most prevalent symptom was physical tiredness (86%) followed by irritability (75%), depression (70%), mental tiredness (70%), and abdominal pain (68%). Temporal clustering of symptoms was reported in 62% of participants. Principal components analysis identified four symptom clusters: neuropsychiatric (mental tiredness, poor concentration, forgetfulness, depression, irritability, physical tiredness, and sleep problems); gastrointestinal (day sweats, nausea, food intolerance, night sweats, abdominal pain, poor appetite, and diarrhea); algesic (joint pain, muscle pain, and general body pain); and dysesthetic (noise sensitivity, light sensitivity, skin. problems, and headaches). These data demonstrate that symptoms are prevalent in treatment-naive people with HCV and support the hypothesis that symptom clustering occurs.
Resumo:
Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.