935 resultados para Dentifrice, fluoride
Resumo:
Mesoporous YF3 nanoflowers were successfully prepared via solvent extraction route. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that these nanoflowers with uneven porous architectures had a spherical shape and were consisted of many YF3 nanosheets with a thickness of about 15 not. Energy-dispersive spectroscopy (EDS) analysis was used to check the chemical composition and purity of the products. YF3 nanoflowers had bimodal mesoporous distribution and Brunauer-Emmett-Teller (BET) surface area of 116 m(2)/g.
Resumo:
Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) (M-PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring-banded spherulites in the M-PAEK/PEEK blends is strongly dependent on the blend composition. In the M.-PAEK-rich blends, upon cooling, an unusual ring-banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M-PAEK/PEEK blend, ring-banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M-PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring-banded spherulite formation in the blends. In addition, the effects of M-PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.
Resumo:
LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.
Resumo:
The nanocrystals of CeF3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF4, NaF, NH4F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF3 nanocrystals.
Resumo:
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.
Resumo:
The bifunctional comonomer 4-(3-butenyl) styrene was used to synthesize crosslinked polystyrene microspheres (c-PS) with pendant butenyl groups on their surface via suspension copolymerization. Polyethylene chains were grafted onto the surface of c-PS microspheres (PS-g-PE) via ethylene copolymerizing with the pendant butenyl group on the surface of the c-PS microspheres under the catalysis of metallocene catalyst. The composition and morphology of the PS-g-PE microspheres were characterized by means of Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. It is possible to control the content of PE grafted onto the surface of c-PS microspheres by varying the polymerization time or the initial quantity of pendant butenyl group on the surface of c-PS microspheres. Investigation on the morphology and crystallization behavior of grafted PE chains showed that different surface patterns could be formed under various crystallization conditions. Moreover, the crystallization temperature of PE chains grafted on the surface of c-PS microspheres was 6 degrees C higher than that of pure PE. The c-PS microspheres decorated by PE chains had a better compatibility with PE matrix.
Resumo:
In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.
Resumo:
0-3 connectivity piezoelectric composites lead zirconate titanate(PZT)/polyvinylidene fluoride(PVDF) were prepared. Crystallininity and microstructure of the samples were characterized by SEM, FTIR and WAXD. The results indicated that the PZT powder was blended with non-crystalline phase of PVDF. The composites presented different net-morphology. PVDF existed as g crystalline phase in the composites. The composites presented island type structure with low content of PZT and hard sphere stack in irregular type with high content of PZT.
Resumo:
Erbium-doped BaF2 nanoparticles were prepared from the microemulsion of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane and water. The X-ray diffraction (XRD) patterns were indexed to a pure BaF2 cubic phase. Transmission electron microscopy (TEM) images showed that BaF2 products were monodispersed with 15-20 nm in size at the dopant concentration of 0.06 mol%. At higher dopant concentration, there was no significant increase in particle size, but more polydispersed. Photoluminescence (PL) properties of the final products were examined. We can observe fluorescence of Er3+ around 1540 nm and with the increase of dopant concentration, the fluorescent intensity increases.
Resumo:
CeF3 and lutetium-doped CeF3 nanoparticles with the dopant concentration of 17, 25, 30, 42 and 50 mol% (molar ratio, Lu/Ce) were synthesized. XRD patterns were indexed to a pure CeF3 hexagonal phase even under the dopant concentration of 50 mol%. Environmental scanning electron microscopy-field emission gun (ESEM-FEG) was used to characterize the morphology of the final products. From the luminescence spectra of the products, we can get a broad emission ranging from 290 to 400 nm with peak at 325 nm. Lutetium-doping increases the luminescence intensity. We got. the most intense luminescence at the dopant concentration of 30 mol%.
Resumo:
BaF2 nanocubes were prepared from quaternary reverse micelles of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane, and water. Interestingly, there are arching sheet-like dendrites growing between two neighbouring sides of these cubes. X-ray powder diffraction (XRD) analysis showed that the products were BaF2 single phase. Scanning electron microscopy (SEM) or transition electron microscopy (TEM) was used to estimate the size of the final products. The results showed that the shape and size of particles were strongly dependent on the reaction conditions, such as the temperature and reaction time. When the reaction temperature was 25 degreesC, we obtained cuboid-like particles with 'clean' surfaces (no dendrites growing on them), and when the temperature was 35 degreesC, we obtained nanocubes with dendrites growing from them between the neighbouring sides. The influence of reaction time at a temperature of 35 degreesC is also discussed.
Resumo:
A new method of measuring the mean size of solvent clusters in swollen polymer membrane is presented in this paper. This method is based on a combination of inverse gas chromatography (IGC) and equilibrium swelling. The mechanism is that weight fraction activity coefficient of solvent in swollen polymer is influenced by its clusters size. The mean clusters size of solvent in swollen polymer can be calculated as the quotient of the weight fraction activity coefficient of clustering system dividing the weigh fraction activity coefficient of non-clustering system. In this experiment, the weigh fraction activity coefficient of non-clustering system was measured with IGC. Methanol, ethanol and polyimide systems were tested with the new method at three temperatures, 20, 40, and 60degreesC. The mean clusters size of methanol in polyimide was five, four, and three at each temperature condition, respectively. Ethanol did not form clusters (the mean clusters size was one). In contrast to the inherent narrow temperature range in DSC, XRD, and FTIR methods, the temperature range in IGC and equilibrium swelling is broad. Compared with DSC. XRD. and FTIR, this new method can detect the clusters of solvent-polymer system at higher temperature.
Resumo:
An asymmetric hydrophobic microporous membrane from the copolymer of tetrafluoroethylene and vinyliden fluoride (F2.4) has been fabricated by phase inversion process. Some characteristics, such as mechanical properties and hydrophobicity, have been examined and compared with polyvinylidenefluoride (PVDF) membrane. Experimental data exhibit F2.4 membrane excellent mechanical properties and hydrophobicity. F2.4 microporous membrane was approximately 6-8 times as high as PVDF membrane in stretching strain and extension ratio at break, and contact angle to distilled water of the fore (88.5degrees) was larger than the latter (80.0degrees), too. The results from membrane distillation (MD) process were well agreed with the fundamental laws of membrane distillation.