839 resultados para Data security


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated crowd counting allows excessive crowding to be detected immediately, without the need for constant human surveillance. Current crowd counting systems are location specific, and for these systems to function properly they must be trained on a large amount of data specific to the target location. As such, configuring multiple systems to use is a tedious and time consuming exercise. We propose a scene invariant crowd counting system which can easily be deployed at a different location to where it was trained. This is achieved using a global scaling factor to relate crowd sizes from one scene to another. We demonstrate that a crowd counting system trained at one viewpoint can achieve a correct classification rate of 90% at a different viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance evaluation of object tracking systems is typically performed after the data has been processed, by comparing tracking results to ground truth. Whilst this approach is fine when performing offline testing, it does not allow for real-time analysis of the systems performance, which may be of use for live systems to either automatically tune the system or report reliability. In this paper, we propose three metrics that can be used to dynamically asses the performance of an object tracking system. Outputs and results from various stages in the tracking system are used to obtain measures that indicate the performance of motion segmentation, object detection and object matching. The proposed dynamic metrics are shown to accurately indicate tracking errors when visually comparing metric results to tracking output, and are shown to display similar trends to the ETISEO metrics when comparing different tracking configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary tasks such as cell phone calls or interaction with automated speech dialog systems (SDSs) increase the driver’s cognitive load as well as the probability of driving errors. This study analyzes speech production variations due to cognitive load and emotional state of drivers in real driving conditions. Speech samples were acquired from 24 female and 17 male subjects (approximately 8.5 h of data) while talking to a co-driver and communicating with two automated call centers, with emotional states (neutral, negative) and the number of necessary SDS query repetitions also labeled. A consistent shift in a number of speech production parameters (pitch, first format center frequency, spectral center of gravity, spectral energy spread, and duration of voiced segments) was observed when comparing SDS interaction against co-driver interaction; further increases were observed when considering negative emotion segments and the number of requested SDS query repetitions. A mel frequency cepstral coefficient based Gaussian mixture classifier trained on 10 male and 10 female sessions provided 91% accuracy in the open test set task of distinguishing co-driver interactions from SDS interactions, suggesting—together with the acoustic analysis—that it is possible to monitor the level of driver distraction directly from their speech.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An educational priority of many nations is to enhance mathematical learning in early childhood. One area in need of special attention is that of statistics. This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling activities. Such modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (i.e., identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Results are reported from the first year of a three-year longitudinal study in which three classes of first-grade children and their teachers engaged in activities that required the creation of data models. The theme of “Looking after our Environment,” a component of the children’s science curriculum at the time, provided the context for the activities. Findings focus on how the children dealt with given complex attributes and how they generated their own attributes in classifying broad data sets, and the nature of the models the children created in organising, structuring, and representing their data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify the extent to which alcohol related injuries are adequately identified in hospitalisation data using ICD-10-AM codes indicative of alcohol involvement. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as involving alcohol if they contained an ICD-10-AM diagnosis or external cause code referring to alcohol, or if the text description extracted from the medical records mentioned alcohol involvement. Results: Overall, identification of alcohol involvement using ICD codes detected 38% of the alcohol-related sample, whilst almost 94% of alcohol-related cases were identified through a search of the text extracted from the medical records. The resultant estimate of alcohol involvement in injury-related hospitalisations in this sample was 10%. Emergency department records were the most likely to identify whether the injury was alcohol-related with almost three-quarters of alcohol-related cases mentioning alcohol in the text abstracted from these records. Conclusions and Implications: The current best estimates of the frequency of hospital admissions where alcohol is involved prior to the injury underestimate the burden by around 62%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine administrative data sources for identification of alcohol-related injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the collapse across the last decade of a number of large organizations such as Enron in the USA and several domestic organizations including Ansett Airlines, HIH Insurance and One.Tel, much discussion has ensued about the need to secure employee entitlements. However, tangible improvements in this area are elusive. Good corporate governance policies would suggest that deferred obligations as well as current debts should not be neglected and that appropriate arrangements be put in place to adequately fund employee entitlements. In this paper we consider recent Australian attempts to introduce better governance of employee entitlements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring Internet traffic is critical in order to acquire a good understanding of threats to computer and network security and in designing efficient computer security systems. Researchers and network administrators have applied several approaches to monitoring traffic for malicious content. These techniques include monitoring network components, aggregating IDS alerts, and monitoring unused IP address spaces. Another method for monitoring and analyzing malicious traffic, which has been widely tried and accepted, is the use of honeypots. Honeypots are very valuable security resources for gathering artefacts associated with a variety of Internet attack activities. As honeypots run no production services, any contact with them is considered potentially malicious or suspicious by definition. This unique characteristic of the honeypot reduces the amount of collected traffic and makes it a more valuable source of information than other existing techniques. Currently, there is insufficient research in the honeypot data analysis field. To date, most of the work on honeypots has been devoted to the design of new honeypots or optimizing the current ones. Approaches for analyzing data collected from honeypots, especially low-interaction honeypots, are presently immature, while analysis techniques are manual and focus mainly on identifying existing attacks. This research addresses the need for developing more advanced techniques for analyzing Internet traffic data collected from low-interaction honeypots. We believe that characterizing honeypot traffic will improve the security of networks and, if the honeypot data is handled in time, give early signs of new vulnerabilities or breakouts of new automated malicious codes, such as worms. The outcomes of this research include: • Identification of repeated use of attack tools and attack processes through grouping activities that exhibit similar packet inter-arrival time distributions using the cliquing algorithm; • Application of principal component analysis to detect the structure of attackers’ activities present in low-interaction honeypots and to visualize attackers’ behaviors; • Detection of new attacks in low-interaction honeypot traffic through the use of the principal component’s residual space and the square prediction error statistic; • Real-time detection of new attacks using recursive principal component analysis; • A proof of concept implementation for honeypot traffic analysis and real time monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate the cost of droughts by matching rainfall data with individual life satisfaction. Our context is Australia over the period 2001 to 2004, which included a particularly severe drought. Using fixed-effect models, we find that a drought in spring has a detrimental effect on life satisfaction equivalent to an annual reduction in income of A$18,000. This effect, however, is only found for individuals living in rural areas. Using our estimates, we calculate that the predicted doubling of the frequency of spring droughts will lead to the equivalent loss in life satisfaction of just over 1% of GDP annually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reduce the damage of phishing and spyware attacks, banks, governments, and other security-sensitive industries are deploying one-time password systems, where users have many passwords and use each password only once. If a single password is compromised, it can be only be used to impersonate the user once, limiting the damage caused. However, existing practical approaches to one-time passwords have been susceptible to sophisticated phishing attacks. ---------- We give a formal security treatment of this important practical problem. We consider the use of one-time passwords in the context of password-authenticated key exchange (PAKE), which allows for mutual authentication, session key agreement, and resistance to phishing attacks. We describe a security model for the use of one-time passwords, explicitly considering the compromise of past (and future) one-time passwords, and show a general technique for building a secure one-time-PAKE protocol from any secure PAKE protocol. Our techniques also allow for the secure use of pseudorandomly generated and time-dependent passwords.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide the first description of and security model for authenticated key exchange protocols with predicate-based authentication. In addition to the standard goal of session key security, our security model also provides for credential privacy: a participating party learns nothing more about the other party's credentials than whether they satisfy the given predicate. Our model also encompasses attribute-based key exchange since it is a special case of predicate-based key exchange.---------- We demonstrate how to realize a secure predicate-based key exchange protocol by combining any secure predicate-based signature scheme with the basic Diffie-Hellman key exchange protocol, providing an efficient and simple solution.