864 resultados para Data mining methods
Resumo:
The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.
Resumo:
Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas
Resumo:
Dissertação de mestrado em Engenharia de Sistemas
Resumo:
Dissertação de mestrado em Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Doctoral Thesis in Information Systems and Technologies Area of Information Systems and Technology
Resumo:
Tese de Doutoramento em Biologia Ambiental e Molecular
Resumo:
The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.
Resumo:
This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.
Resumo:
Nowadays in healthcare, the Clinical Decision Support Systems are used in order to help health professionals to take an evidence-based decision. An example is the Clinical Recommendation Systems. In this sense, it was developed and implemented in Centro Hospitalar do Porto a pre-triage system in order to group the patients on two levels (urgent or outpatient). However, although this system is calibrated and specific to the urgency of obstetrics and gynaecology, it does not meet all clinical requirements by the general department of the Portuguese HealthCare (Direção Geral de Saúde). The main requirement is the need of having priority triage system characterized by five levels. Thus some studies have been conducted with the aim of presenting a methodology able to evolve the pre-triage system on a Clinical Recommendation System with five levels. After some tests (using data mining and simulation techniques), it has been validated the possibility of transformation the pre-triage system in a Clinical Recommendation System in the obstetric context. This paper presents an overview of the Clinical Recommendation System for obstetric triage, the model developed and the main results achieved.
Resumo:
The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.
Resumo:
The main objective of this thesis on flooding was to produce a detailed report on flooding with specific reference to the Clare River catchment. Past flooding in the Clare River catchment was assessed with specific reference to the November 2009 flood event. A Geographic Information System was used to produce a graphical representation of the spatial distribution of the November 2009 flood. Flood risk is prominent within the Clare River catchment especially in the region of Claregalway. The recent flooding events of November 2009 produced significant fluvial flooding from the Clare River. This resulted in considerable flood damage to property. There were also hidden costs such as the economic impact of the closing of the N17 until floodwater subsided. Land use and channel conditions are traditional factors that have long been recognised for their effect on flooding processes. These factors were examined in the context of the Clare River catchment to determine if they had any significant effect on flood flows. Climate change has become recognised as a factor that may produce more significant and frequent flood events in the future. Many experts feel that climate change will result in an increase in the intensity and duration of rainfall in western Ireland. This would have significant implications for the Clare River catchment, which is already vulnerable to flooding. Flood estimation techniques are a key aspect in understanding and preparing for flood events. This study uses methods based on the statistical analysis of recorded data and methods based on a design rainstorm and rainfall-runoff model to estimate flood flows. These provide a mathematical basis to evaluate the impacts of various factors on flooding and also to generate practical design floods, which can be used in the design of flood relief measures. The final element of the thesis includes the author’s recommendations on how flood risk management techniques can reduce existing flood risk in the Clare River catchment. Future implications to flood risk due to factors such as climate change and poor planning practices are also considered.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Habil.-Schr., 2003