922 resultados para DNA -- Methylation
Resumo:
Carpintero and Dellap, (Hemiptera: Thaumastocoridae) is a native Australian sap-feeding insect that has become invasive and seriously damaging to commercially grown in the Southern Hemisphere. Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of . If implemented as a biological control agent, this factor will need to be considered in collecting and releasing .
Resumo:
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Resumo:
Using mitochondrial DNA for species identification and population studies assumes that the genome is maternally inherited, circular, located in the cytoplasm and lacks recombination. This study explores the mitochondrial genomes of three anomalous mackerel. Complete mitochondrial genome sequencing plus nuclear microsatellite genotyping of these fish identified them as Scomberomorus munroi (spotted mackerel). Unlike normal S. munroi, these three fish also contained different linear, mitochondrial genomes of Scomberomorus semifasciatus (grey mackerel). The results are best explained by hybridisation, paternal leakage and mitochondrial DNA linearization. This unusual observation may provide an explanation for mtDNA outliers in animal population studies. © 2013.
Resumo:
Birch reduction and reductive methylations of the title compounds have been investigated. 7-Methoxy-3,4-dihydrophenanthren-1(2H)-one (2) yields the cis-3,4,9,10,11,12-hexahydro-derivative (15) while the 7-methoxy-1,2-dihydrophenanthren-4(3H)-one (5) is reduced to the corresponding 1,2,9,10-tetrahydro-derivative (7). The factors influencing the mechanism of the reduction process have been discussed. The reductive methylation products of the ketone (2) are useful substrates in the synthesis of 9-methyl steroids.
Resumo:
This thesis consists of two parts; in the first part we performed a single-molecule force extension measurement with 10kb long DNA-molecules from phage-λ to validate the calibration and single-molecule capability of our optical tweezers instrument. Fitting the worm-like chain interpolation formula to the data revealed that ca. 71% of the DNA tethers featured a contour length within ±15% of the expected value (3.38 µm). Only 25% of the found DNA had a persistence length between 30 and 60 nm. The correct value should be within 40 to 60 nm. In the second part we designed and built a precise temperature controller to remove thermal fluctuations that cause drifting of the optical trap. The controller uses feed-forward and PID (proportional-integral-derivative) feedback to achieve 1.58 mK precision and 0.3 K absolute accuracy. During a 5 min test run it reduced drifting of the trap from 1.4 nm/min in open-loop to 0.6 nm/min in closed-loop.
Resumo:
The first synthesis of long chain 5-n-alkylresorcinols (C15-C25) in whole grains and whole grain products by a novel modification of Wittig reaction is described. 5-n-Alkylresorcinols are phenolic lipids that have various effects on biological systems, such as antioxidant activity and interaction with biological membranes. These compounds are considered as biomarkers of whole grain intake, which is connected with reduced risk of cardiovascular diseases and certain cancers. Novel hapten derivatives of 5-n-alkylresorcinols, potential compounds for immunoanalytical techniques, are prepared by the same procedure utilizing microwave catalysed aqueous Wittig reaction as the key step. The synthesised analogues are required by various analytical, metabolism and bioactivity investigations. Four alternative strategies for producing deuterium polylabelled 5-n-alkylresorcinols are explored. Ring-labelled D3-alkylresorcinols were synthesized by acidic H/D exchange. Side chain -labelled D4-derivative was prepared by a total synthesis approach utilizing D2 deuterogenation of a D2-alkene derivative, and deuterogenation of alkynes was investigated in another total synthesis approach. An -D3-labelled alkylresorcinol is isotopically pure and completely stable under all relevant conditions encountered during analytical work. The labelling of another phenolic component of whole grains was explored. The preparation of D3-ferulic acid and related compounds by way of selective methylation of the precursors is described. The deuterated compounds are useful as standards in the quantification of these natural products in various substances, such as food and human fluids. The pure 5-n-alkylresorcinol analogues prepared were used in in vitro experiments on alkylresorcinol antioxidant activity and antigenotoxicity. The in vitro experiments show that alkylresorcinols act as antioxidants, especially when incorporated into biological systems, but possess lower activity in chemical tests (FRAP and DPPH assay). Whole grain alkylresorcinols are shown for the first time to have a protective effect against copper induced oxidation of LDL, and H2O2 or genotoxic faecal water induced damage on HT29 cells.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
The electrical and optical properties of MWCNTs/DNA composite were studied. Electrical conductivity studies reveal that, the increase in CNTs concentration in DNA increases the conductivity. Fourier transformed Infrared (FTIR) spectrum shows that the CNTs are bonded to DNA covalently at the ends and defects sites and the wrapping of DNA on the CNTs is due to van der Waals force.
Resumo:
In the century since the description of the orthoclad genus Paratrichocladius Santos-Abreu (Diptera: Chironomidae), separation in any life stage from the cosmopolitan, diverse Cricotopus Wulp has been problematic. Molecular analysis reveals the presence of two species in Australia that conform in morphology to Paratrichocladius and which form a well-supported clade including Paratrichocladius micans (Kieffer) from Africa and a distinct southern African larva. This clade clusters with taxa allied with Cricotopus albitibia (Walker), in turn nested within all other sampled Australian Cricotopus. Relevant nodes strongly support Cricotopus as nonmonophyletic without inclusion of Paratrichocladius. We synonymize Paratrichocladius with Cricotopus syn.n, treating Paratrichocladius as a subgenus. Cricotopus (Paratrichocladius) australiensis Cranston sp.n. is described for Trichocladius pluriserialis Freeman from Australia, which is not the same species under that name in New Zealand. Cricotopus (Paratrichocladius) bifenestrus Cranston sp.n. from Australia is described, also in all life stages. The many new combinations, listed in an Appendix, include three replacement names for new secondary homonyms, namely: Cricotopus (Paratrichocladius) sinobicinctus Cranston & Krosch nom.n. for Paratrichocladius bicinctus Fu, Sæther & Wang, Cricotopus draysoni Cranston & Krosch nom.n. for Cricotopus brevicornis Drayson, Krosch & Cranston, and Cricotopus (Paratrichocladius) sikhotealinus Makarchenko & Makarchenko nom.n. for Cricotopus orientalis Kieffer. We conclude with comments on wider issues in the taxonomy of Paratrichocladius, especially concerning New Zealand species.
Resumo:
This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.
Resumo:
DNA polymerase has been purified approximately 2000-fold from Mycobacterium tuberculosis H37Rv. The purified preparation was homogeneous by electrophoretic criteria and has a molecular weight of 135 000. The purified enzyme resembles Escherichia coli polymerase I in its properties, being insensitive to sulfhydryl drugs and possessing 5′,3′-exonuclease activity in addition to polymerase and 3′,5′-exonuclease activities. However, it differs from the latter in its sensitivity to higher salt concentration and DNA intercalating agents such as 8-aminoquinoline. The polymerase exhibited maximal activity between 37–42°C and pH 8.8–9.5. The polymerase was stable for several months below 0°C. However, the 5′,3′-exonuclease activity was more labile. The effects of different metal ions, polyamines and drugs on the polymerase activity are presented.
Resumo:
The binding of chromomycin A3, an antitumour antibiotic, to various DNA and chromatin isolated from mouse and rat liver, mouse fibrosarcoma and Yoshida ascites sarcoma cells was studied spectrophotometrically at 29°C in 10−2 M Tris-HCl buffer, pH 8.0, containing small amounts of MgCl2 (4.5 · 10−5−25 · 10−5 M). An isobestic point at 415 nm was observed when chromomycin A3 was gradually titrated with Image and its spectrum shifted towards higher wavelength. The rates and extent of these spectral changes were found to be dependent on the concentration of Mg2+. The change in absorbance at 440 nm was used to calculate apparent binding constant (Ka p M−1) and sites per nucleotide (n) from Scatchard plots for various DNA and chromatins. As expected, values of n for chromatin (0.06–0.10) were found to be lower than that found for corresponding DNA (0.10–0.15). Apparently no such correlation exists between binding constants (Ka p M−1 · 10−4) of DNA (6.4–11.2) and of chromatin (3.1–8.3), but Ka p M−1 of chromatin isolated from mouse fibrosarcoma and Yoshida ascites sarcoma are 1.5–3 times higher than that found for mouse and rat liver chromatin. These differences may be taken to indicate structural difference in nucleoprotein complexes caused by neoplasia. The relevance of this finding to tumour suppressive action of chromomycin A3 is discussed.
Resumo:
Transition protein 1 (TP1) and TP2 replace histones during midspermiogenesis (stages 12-15) and are finally replaced by protamines. TPs play a predominant role in DNA condensation and chromatin remodeling during mammalian spermiogenesis. TP2 is a zinc metalloprotein with two novel zinc finger modules that condenses DNA in vitro in a GC-preference manner. TP2 also localizes to the nucleolus in transfected HeLa and Cos-7 cells, suggesting a GC-rich preference, even in vivo. We have now studied the localization pattern of TP2 in the rat spermatid nucleus. Colocalization studies using GC-selective DNA-binding dyes chromomycin A3 and 7-amino actinomycin D and an AT-selective dye, 4',6-diamidino-2-phenylindole, indicate that TP2 is preferentially localized to GC-rich sequences. Interestingly, as spermatids mature, TP2 and GC-rich DNA moves toward the nuclear periphery, and in the late stages of spermatid maturation, TP2 is predominantly localized at the nuclear periphery. Another interesting observation is the mutually exclusive localization of GC- and AT-rich DNA in the elongating and elongated spermatids. A combined immunofluorescence experiment with anti-TP2 and anti-TP1 antibodies revealed several foci of overlapping localization, indicating that TP1 and TP2 may have concerted functional roles during chromatin remodeling in mammalian spermiogenesis.
Resumo:
Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.