949 resultados para Cobalt phthalocyanine
Resumo:
The deviation from the stoichiometric composition of single-crystal 'Er2Co17' has been determined by theoretical analysis. It is found that the composition of this single-crystal 'Er2Co17' is rich in cobalt, and its real composition is suggested to be Er2-deltaCo17+2 delta (delta = 0.14) on the basis of a comparison of calculations based on the single-ion model with a series of experiments. The values of the Er-Co exchange field H-ex and the crystalline-electric-field (CEF) parameters A(n)(m) at the rare-earth (R) site in the 'Er2Co17' compound are also evaluated at the same time. The experiments provide the following data: the temperature dependence of the spontaneous magnetization of the compounds and the normalized magnetic moment of the Er ion, the magnetization curves dong the crystallographic axes at 4.2 K and 200 K, and the temperature dependence of the magnetization along the crystallographic axes in a field of 4 T.
Resumo:
Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products μτ of the composite film were increased by nearly one order of magnitude from 6.96 × 10~(-7) to 5.08 × 10~(-6) cm~2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.
Resumo:
We investigate high-field ferromagnetic resonance of superparamagnetic particles with uniaxial anisotropy, In this case, since the field is large enough to saturate the magnetization, the thermal orientational fluctuations of the magnetic moment of the particle are negligible. Thus, we derive the dynamic susceptibility of the system on the basis of an independent particle model. High-field ferromagnetic resonance has been performed on fine cobalt particles, The analysis of the spectra obtained at different frequencies allows us to estimate the effective magnetic anisotropy, the gyromagnetic ratio, and the transverse relaxation time. (C) 1998 Elsevier Science B.V. All rights reserved.