958 resultados para Charge Density Waves
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
The Low-Density Lipoprotein Receptor (LDLR) gene is a cell surface receptor that plays an important role in cholesterol homeostasis. We investigated the (TA)n polymorphism in exon 18 of the LDLR gene on chromosome 19p13.2 performing an association analysis in 244 typical migraine-affected patients, 151 suffering from migraine with aura (MA), 96 with migraine without aura (MO) and 244 unaffected controls. The populations consisted of Caucasians only, and controls were age- and sex-matched. The results showed no significant difference between groups for allele frequency distributions of the (TA)n polymorphism even after separation of the migraine-affected individuals into subgroups of MA and MO affected patients. This is in contradiction to Mochi et al. who found a positive association of this variant with MO. Our study discusses possible differences between the two studies and extends this research by investigating circulating cholesterol levels in a migraine-affected population.
Resumo:
RFLPs at the low density lipoprotein receptor locus (LDLR) display marked linkage disequilibrium between each other. Cross-sectional analysis of a bi-alleleic ApaLI RFLP of LDLR showed that the 9.4- and 6.6-kb alleles were present in similar frequency between a group of 84 Caucasian essential hypertensive (HT) and a group of 96 normotensive subjects whose parents each had a similar blood pressure status at age > or = 50. After subdividing HTs into lean and obese, however, the frequency of the 6.6-kb allele in the 27 HTs with BMI > or = 26 kg/m2 was 0.63, compared with 0.39 for HTs with BMI < 26 (chi 2 = 8.8; P = 0.004). The difference in genotype frequencies was even more striking (chi 2 = 23; P = 0.00008), with a virtual absence of 9.4-kb homozygotes in the obese HT group (1 vs 22). Genetic variation at LDLR (19p13.2) is thus associated with obesity in HT.
Resumo:
The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.
Resumo:
Comparison of well-determined single crystal data for stoichiometric, or near-stoichiometric, metal hexaborides con-firm previously identified lattice parameter trends using powder diffraction. Trends for both divalent and trivalent forms suggest that potential new forms for synthesis include Sc and Mn hexaborides. Density Functional Theory (DFT) calculations for KB6, CaB6, YB6, LaB6, boron octahedral clusters and Sc and Mn forms, show that the shapes of bonding orbitals are defined by the boron framework. Inclusion of metal into the boron framework induces a reduction in energy ranging from 1 eV to 6 eV increasing with ionic charge. For metals with d1 character, such a shift in energy brings a doubly degenerate band section along the G-M reciprocal space direction within the conduction bands tangential to the Fermi surface. ScB6 band structure and density of states calculations show directional and gap characteristics similar to those of YB6 and LaB6. These calculations for ScB6 suggest it may be possible to realize superconductivity in this compound if synthesized.
Resumo:
OBJECTIVE To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN A cross-sectional case-control study. SUBJECTS One hundred and seven obese individuals, defined as a body mass index (BMI) ≤ 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (χ2 = 12.3, P = 0.002), but not in males (χ2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS These results suggest that in females, LDLR may play a role in the development of obesity.
Resumo:
Obese (BMI ≥ 26 kg/m 2; n = 51) and lean (BMI <26 kg/m 2; n = 61) Caucasian patients with severe, familial essential hypertension, were compared with respect to genotype and allele frequencies of a HincII RFLP of the low density lipoprotein receptor gene (LDLR). A similar analysis was performed in obese (n = 28) and lean (n = 68) normotensives. A significant association of the C allele of the T→C variant responsible for this RFLP was seen with obesity (χ 2 = 4.6, P = 0.029) in the hypertensive, but not in the normotensive, group (odds ratio = 3.0 for the CC genotype and 2.7 for CT). Furthermore, BMI tracked with genotypes of this allele in the hypertensives (P = 0.046). No significant genotypic relationship was apparent for plasma lipids. Significant linkage disequilibrium was, moreover, noted between the HincII RFLP and an ApaLI RFLP (χ 2 = 33, P<0.0005) that has previously shown even stronger association with obesity (odds ratio 19.6 for cases homozygous for the susceptibility allele and 15.2 for het-erozygotes). The present study therefore adds to our previous evidence implicating LDLR as a locus for obesity in patients with essential hypertension.
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.
Resumo:
A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ- monoanion. In the presence of Mx+(MeCN), reaction with TCNQ-(MeCN) leads to deposition of Mx+[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 μm in length and with diameters of less than 180 nm, and Co[TCNQ]2(H2O)2 as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal−TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.
Resumo:
The galvanic replacement of isolated nanostructures of copper and silver on conducting supports as well as continuous films of copper with gold is reported. The surface morphology was characterized by scanning electron microscopy and the replacement with gold was confirmed by EDX analysis. It was found that lateral charge propagation during the replacement reaction had a significant effect in all cases. For the isolated nanostructures the deposition of gold was observed not only at the sacrificial template but also at the surrounding unmodified areas of the conducting substrate. In the case of copper films the role of lateral charge propagation was also confirmed by connecting it to an ITO electrode through an external circuit upon which gold deposition was also observed to occur. Interestingly, by inhibiting the rate of charge propagation, through the introduction of a series resistor, the morphology of gold on the copper substrate could be changed from discrete surface decoration with cube like nanoparticles to a more porous rough surface.
Resumo:
Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.