988 resultados para CRYSTAL MORPHOLOGY
Resumo:
Single crystals of a-hopeite exhibiting high transparency were grown by single diffusion gel growth technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system. The values of several structural and physical parameters have been determined for the grown crystal. The optical absorption study reveals the transparency of the crystal and is noticed in the entire visible region and the cut-off wavelength was found to be 230 nm. The optical band gap found to be at 3.25 eV. The dependence of extinction co-efficient (k) and the refractive index (n) on the wavelength was also shown. The dielectric constant and dielectric loss of the crystal was studied as a function of frequency and temperature. Transport properties of the grown crystal have been studied from the Cole-Cole plot. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
The structure of a type I langbeinite, Rb2Cd2(SO4)(3), displays three different phases, cubic with a = 10.378(5) Angstrom (space group P2(1)3) at room temperature, monoclinic at 120 K with a = 10.328(3), b = 10.322(3), c = 10.325(3) Angstrom, beta = 89.975(1)degrees (space group P2(1)), and orthorhombic at 85 K with a = 10.319(2), b = 10.321(2), c = 10.320(2) Angstrom (space group P2(1)2(1)2(1)), respectively. Precise single-crystal analyses of these phases indicate that Rb2Cd2(SO4)(3) distorts initially from cubic to monoclinic upon cooling followed by a significant reorientation of the SO4 tetrahedra, resulting in an orthorhombic symmetry upon further cooling. The three structures have been established unequivocally using the same crystal. There is no indication of the formation of an intermediate triclinic phase or any lattice disorder as conjectured in several earlier reports on compounds belonging to the type I langbeinite. The bond valence sum analyses of the coordination around the Rb sites indicate asymmetry in the bond strengths which could be the driving force of the ferroelectric behavior in these materials.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.
Resumo:
Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.
Resumo:
Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.
Resumo:
Addition of excess carbon disulfide to cis/trans-[(dPPM)(2)Ru(H)(2)] results in the methanedithiolate complex [(dppm)(2)Ru(eta(2)-S2CH2)] 4 via the intermediacy of cis-[(dppm)(2)Ru(H)(SC(S)H)] 2. The X-ray crystal structure of this species has been determined.
Resumo:
Single crystal X-ray diffraction analysis of neopupukean-2-yl p-nitrobenzoate unambiguously established the stereochemistry of the thiocyanate group as endo in the marine sesquiterpene 2-thiocyanatoneopupukeanane.
Resumo:
Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.
Resumo:
Electronic and ionic conductivities of silver selenide crystal (Ag$_2+\delta$ Se) have been measured over a range of stoichiometry through the $\alpha - \beta$ transition by using solid state electrochemical techniques. In the high temperature $\beta$-phase Ag$_2$Se shows metallic behaviour of electronic conductivity for high values of $\delta$; with decrease in $\delta$, the conductivity of the material exhibits a transition. The magnitude of change in electronic conductivity at the $\alpha - \beta$ transition is also determined by stoichiometry. Ionic conductivity of the $\beta$-phase does not vary significantly with stochiometry. Ionic conductivity of the $\beta$-does not vary significantly with stoichiometry. A model to explain the observed transport properties has been suggested.
Resumo:
The crystal structure of N3P3Cl4(NEt2)(NPPh3) has been determined. The crystals are orthorhombic, space group Pbca, with a= 8.208(1), b= 21.890(1), c= 31.722(2)Å, Z= 8, and m.p. = 146.5 °C. The structure was solved by direct methods and refined to a final R value of 0.045 for 2 025 independent reflections. The analysis reveals significant variations in the ring P–N bond lengths. The two nitrogenous substituents, NPPh3 and NEt2, reside on the same phosphorus atom. The latter, NEt2, has an almost exact type II conformation (the plane NC2 almost perpendicular to the local NPN plane)(the first observed for a dialkylamino-group in cyclophosphazenes), the former, NPPh3, deviates from type II towards type III (in type III the plane Pring–N–Pexo makes an angle of ca. 45° with the local N–P–N ring plane). The present structure is compared with others of triphenylphosphazenyl-cyclophosphazenes and the conformation of the NPPh3 substituent and its electron supply in the ground and perturbed states are discussed.
Resumo:
The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
2- and 5-methylresorcinol form co-crystals with 4,4'-bipyridine in which some of the bipyridine molecules are loosely bound. These molecules can be replaced with other molecules of a similar shape and size to give a general method for the engineering of a ternary co-crystal.