893 resultados para CMC (carboxymethyl cellulose)
Resumo:
In this work the separation of the chiral anesthetic compounds ketamine and bupivacaine was development using two chiral stationary phases (CSP). Ketamine enantiomers were well separate in the polysaccharide-based CSP (microcrystalline cellulose triacetate - MCTA) while bupivacaine in the tartardiamide-based CSP (Kromasil CHI-TBB). In both cases, the effect of temperature was investigated under analytical conditions. An improvement in the separation performance with temperature was observed. Thermodynamic parameters were evaluated by the van't Hoff plot. We concluded that enthalpic effects controlled the retention in these chiral columns. The enantiomers of ketamine and bupivacaine were separated under overloaded conditions with a good performance.
Resumo:
The use of lignocellulosic fibers and their constituents, as raw materials in the production of polymeric and composite materials, represent an exceptional opportunity of sustainable technological development. In the present report works that discuss promising alternatives of obtaining and use of materials such as cellulose, hemicellulose, lignin, cellulose nanocrystals and biocomposites were revised. The advance in the use of biomass can be, in a near future, capable of going beyond the application difficulties of these vast materials, especially in relation to the economical unviability, by the production of high performance polymeric and composite materials. This advance would represent a higher profitability to some areas of agrobusiness, especially the sector of biofuels, which produces elevated amounts of biomass waste.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
Mixtures of ethyl(hydroxyethyl)cellulose (EHEC) and Sodium Dodecyl Sulfate (SDS) were investigated using surface tension, conductivity and viscosity measurements in aqueous solutions. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration (cac) and saturation of the polymer by SDS (psp) were determined from the plots of surface tension and specific conductivity versus surfactant concentration. Through the final results we see that there was no specific link of polymer with the surfactant, implying therefore a phenomenon of only cooperative association.
Resumo:
Wood is the main raw material used in the pulp and paper industry. It is a material that presents heterogeneous structure and complex composition, which results in a relatively resistant material to the biodegradation process. In the present review, we attempted to summarize the structural characteristics of wood and describe the chemical nature of its major components to, afterwards, comment about its biodegradation. The role of the enzyme manganese peroxidase in the lignin degradation by a selective white-rot fungus, Ceriporiopsis subvermispora, was highlighted.
Resumo:
The goal of this work is the development and validation of an analytical method for fast quantification of sibutramine in pharmaceutical formulations, using diffuse reflectance infrared spectroscopy and partial least square regression. The multivariate model was elaborated from 22 mixtures containing sibutramine and excipients (lactose, microcrystalline cellulose, colloidal silicon dioxide and magnesium stearate) and using fragmented (750-1150/ 1350-1500/ 1850-1950/ 2600-2900 cm-1) and smoothing spectral data. Using 10 latent variables, excellent predictive capacity were observed in the calibration (n=20, RMSEC=0.004, R= 0.999) and external validation (n=5, RMSEC= 9.36, R=0.999) phases. In the analysis of synthetic mixtures the precision (SD=3,47%) was compatible with the rules of the Agencia Nacional de Vigilância Sanitária (ANVISA-Brazil). In the analysis of commercial drugs good agreement was observed between spectroscopic and chromatographic methods.
Resumo:
In this work, four different process configurations, including three simultaneous saccharification and fermentation (SSF) schemes and one separate hydrolysis and fermentation (SHF) scheme, were compared, at 8% water-insoluble solids, regarding ethanol production from steam-pretreated and alkali-delignified sugar cane bagasse. Two configurations included a 16 h lasting enzymatic presaccharification prior to SSF, and the third one was a classical SSF without presaccharification. Cellulose conversion was higher for the delignified bagasse, and higher in SSF experiments than in SHF. The highest cellulose-to-ethanol conversion (around 60% in 24 h) and maximum ethanol volumetric productivities (0.29-0.30 g/L.h) were achieved in the presaccharification-assisted SSF.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
The study of pyrolysis is gaining increasing importance, since it is the first step in the gasification or combustion process. In this study, pyrolysis experiments of cypress pine were carried out in a thermogravimetric analyzer at six different heating rates between 5 and 40 ºC / min. Kinetics parameters of pine were determined from TGA by using the differential and the maximum speed methods. Additionally, the distribution of activation energies was also carried out finding the values of 113.57 and 157.32 kJ/mol, which are in the range of activation energies reported for hemicellulose and cellulose, respectively, main components of wood.
Resumo:
Production of ethanol from biomass fermentation has gained much attention recently. Biomass cellulosic material is first converted into glucose either by chemical or by enzymatic process, and then glucose is fermented to ethanol. Considering the current scenario, where many efforts are devoted for the search of green routes to obtaining ethanol from renewable sources, this review presents the relationship between structure and properties of cellulosic material, pre-treatments and hydrolysis of cellulosic material, and structure and function of cellulase enzyme complex.
Efecto del catión, del anión y del co-ión sobre la agregación de líquidos iónicos en solución acuosa
Resumo:
The aggregation behavior of thirteen 1-alkyl-3-methylimidazolium based ionic liquids in aqueous solution is presented, considering variations of the alkyl side chain length as well as the anionic moiety. Cation and anion molecular volumes are selected as appropriate molecular descriptors. Additionally, the existing relationship between critical micelle concentration (CMC) and electrolyte concentration in solution is established, aiming to clarify ion effects. CMC values were obtained by measuring electrical conductivity and surface tension. It was confirmed that aggregation of ionic liquids in aqueous solution and in presence of inorganic salts is affected by the factors developed in this study.
Resumo:
The effects of solvents on chemical phenomena is complex because there are various solute-solvent interaction mechanisms. Solvatochromism refers to the effects of solvents on the spectra of probes. The study of this phenomenon sheds light on the relative importance of the solvation mechanisms. Solvation in pure solvents is quantitatively analyzed in terms of a multi-parameter equation. In binary solvent mixtures, solvation is analyzed by considering the organic solvent, S, water, W, and a 1:1 hydrogen bonded species (S-W). The applications of solvatochromism to understand distinct chemical phenomena, reactivity and swelling of cellulose, is briefly discussed.
Resumo:
Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.
Resumo:
Cellulose acetate produced from mango seed fibers cellulose was used as a matrix for preparation of microparticles empty and load with acetaminophen (Paracetamol) in order to evaluate the incorporation of an active agent during the formation of microparticles. The microparticles are characterized by Fourier Transformed Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). The incorporation of paracetamol can be confirmed by the change in value of glass transition temperature (Tg). The formation of microparticles spherical was observed by SEM and showed an average diameter of 1.010 and 0.950 mm for empty and load microparticles respectively.
Resumo:
In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethyl)cellulose (EHEC) and mixed anionic surfactant sodium dodecanoate (SDoD)-sodium decanoate (SDeC) in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer) were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.