863 resultados para Business enterprises - Computer networks
Resumo:
Companies and their services are being increasingly exposed to global business networks and Internet-based ondemand services. Much of the focus is on flexible orchestration and consumption of services, beyond ownership and operational boundaries of services. However, ways in which third-parties in the “global village” can seamlessly self-create new offers out of existing services remains open. This paper proposes a framework for service provisioning in global business networks that allows an open-ended set of techniques for extending services through a rich, multi-tooling environment. The Service Provisioning Management Framework, as such, supports different modeling techniques, through supportive tools, allowing different parts of services to be integrated into new contexts. Integration of service user interfaces, business processes, operational interfaces and business object are supported. The integration specifications that arise from service extensions are uniformly reflected through a kernel technique, the Service Integration Technique. Thus, the framework preserves coherence of service provisioning tasks without constraining the modeling techniques needed for extending different aspects of services.
Resumo:
The next generation of SOA needs to scale for flexible service consumption, beyond organizational boundaries and current B2B applications, into communities, eco-systems, and business networks. In the wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt, and expose services where they can be discovered, ordered, consumed, metered, and paid for, through new applications and opportunities, driven by third parties in the global "village". This trend is already underway, in different ways, through various early adopter market segments. For the small medium enterprises segment, Google, Intuit-Microsoft, and others have launched appstores, through which an open-ended array of hosted applications are sourced from the development community and procured as maketplace commondities. In the corporate sector, the marketplace model and business network hubs are being put in place on top of connectivity and network orchestration investments for capitalizing services as tradable assets, seen in banking/finance (e.g. American Express Intelligent Marketplace), logistics (e.g., the E2open hub), and the public sector (e.g., UK DirectGov whole-of-government citizen services delivery).
Resumo:
Because of their limited number of senior positions and fewer alternative career paths, small businesses have a more difficult time attracting and retaining skilled information systems (IS) staff and are thus dependent upon external expertise. Small businesses are particularly dependent on outside expertise when first computerizing. Because small businesses suffer from severe financial constraints. it is often difficult to justify the cost of custom software. Hence. for many small businesses, engaging a consultant to help with identifying suitable packaged software and related hardware, is their first critical step toward computerization. This study explores the importance of proactive client involvement when engaging a consultant to assist with computer system selection in small businesses. Client involvement throughout consultant engagement is found to be integral to project success and frequently lacking due to misconceptions of small businesses regarding their role. Small businesses often overestimate the impact of consultant and vendor support in achieving successful computer system selection and implementation. For consultant engagement to be successful, the process must be viewed as being directed toward the achievement of specific organizational results where the client accepts responsibility for direction of the process.
Resumo:
The major challenge of European Union’s agricultural industry is to ensure sustainable supply of quality food that meets the demands of a rapidly growing population, changing dietary patterns, increased competition for land use, and environmental concerns. Investments in research and innovation, which facilitate integration of external knowledge in food chain operations, are crucial to undertaking such challenges. This paper addresses how SMEs successfully innovate within collaborative networks with the assistance of innovation intermediaries. In particular, we explore the roles of innovation intermediaries in knowledge acquisition, knowledge assimilation, knowledge, transformation, and knowledge exploitation in open innovation initiatives from the wine industry through the theoretical lens of absorptive capacity. Based on two case studies from the wine industry, we identified seven key activities performed by innovation intermediaries that complement SMEs’ ability to successfully leverage external sources of knowledge for innovation purposes. These activities are articulation of knowledge needs and innovation capabilities, facilitation of social interactions, establishment of complementary links, implementation of governance structures, conflict management, enhancement of transparency, and mediation of communication. Our in-depth qualitative study of two innovation intermediaries in the wine industry has several important implications that contribute to research and practice.
Resumo:
This article examines the network relationships of a set of large retail multinational enterprises (MNEs). We analyze under what conditions a flagship-network strategy (characterized by a network of five partners – the MNE, key suppliers, key partners, selected competitors and key organisations in the non-business infrastructure) explains the internationalisation of three retailers whose geographic scope, sectoral conditions and competitive strategies differ substantially. We explore why and when retailers will adopt a flagship strategy. The three firms are two U.K.-based multinational retailers (Tesco and The Body Shop) and a French-based global retailer (Moët Hennessy Louis Vuitton). We find evidence of strong network relationships for all three retailers, although each embraces network strategies for different reasons. Their flagship relationships depend on each retailer's strategic use of firm-specific-advantages (FSAs) and country-specific advantages (CSAs). We find that a flagship strategy can succeed in overcoming internal and/or environmental constraints to cross-border resource transfers, which are barriers to foreign direct investment (FDI). We provide recommendations on why and when to use a flagship-based strategy and which type of network partners to prioritize in order to succeed internationally.
Resumo:
In this work, we study the performance evaluation of resource-aware business process models. We define a new framework that allows the generation of analytical models for performance evaluation from business process models annotated with resource management information. This framework is composed of a new notation that allows the specification of resource management constraints and a method to convert a business process specification and its resource constraints into Stochastic Automata Networks (SANs). We show that the analysis of the generated SAN model provides several performance indices, such as average throughput of the system, average waiting time, average queues size, and utilization rate of resources. Using the BP2SAN tool - our implementation of the proposed framework - and a SAN solver (such as the PEPS tool) we show through a simple use-case how a business specialist with no skills in stochastic modeling can easily obtain performance indices that, in turn, can help to identify bottlenecks on the model, to perform workload characterization, to define the provisioning of resources, and to study other performance related aspects of the business process.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
Business angels are natural persons who provide equity financing for young enterprises and gain ownership in them. They are usually anonym investors and they operate in the background of the companies. Their important feature is that over the funding of the enterprises based on their business experiences they can contribute to the success of the companies with their special expertise and with strategic support. As a result of the asymmetric information between the angels and the companies their matching is difficult (Becsky-Nagy – Fazekas 2015), and the fact, that angel investors prefer anonymity makes it harder for entrepreneurs to obtain informal venture capital. The primary aim of the different type of business angel organizations and networks is to alleviate this matching process with intermediation between the two parties. The role of these organizations is increasing in the informal venture capital market compared to the individually operating angels. The recognition of their economic importance led many governments to support them. There were also public initiations that aimed the establishment of these intermediary organizations that led to the institutionalization of business angels. This study via the characterization of business angels focuses on the progress of these informational intermediaries and their ways of development with regards to the international trends and the current situation of Hungarian business angels and angel networks.
Resumo:
Part 19: Knowledge Management in Networks
Resumo:
Part 17: Risk Analysis
Resumo:
Part 12: Collaboration Platforms
Resumo:
Part 11: Reference and Conceptual Models
Resumo:
Part 9: Innovation Networks
Resumo:
Part 8: Business Strategies Alignment
Resumo:
Part 6: Engineering and Implementation of Collaborative Networks