986 resultados para Biomedical research|Electrical engineering
Resumo:
Level design is often characterised as “where the rubber hits the road” in game development. It is a core area of games design, alongside design of game rules and narrative. However, there is a lack of literature dedicated to documenting teaching games design, let alone the more specialised topic of level design. Furthermore, there is a lack of formal frameworks for best practice in level design, as professional game developers often rely on intuition and previous experience. As a result, there is little for games design teachers to draw on when presented with the opportunity to teach a level design unit. In this paper, we discuss the design and implementation of a games level design unit in which students use the StarCraft II Galaxy Editor. We report on two cycles of an action research project, reflecting upon our experiences with respect to student feedback and peer review, and outlining our plans for improving the unit in years to come.
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
This research introduces a general methodology in order to create a Coloured Petri Net (CPN) model of a security protocol. Then standard or user-defined security properties of the created CPN model are identified. After adding an attacker model to the protocol model, the security property is verified using state space method. This approach is applied to analyse a number of trusted computing protocols. The results show the applicability of proposed method to analyse both standard and user-defined properties.
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
The format of grant applications should be updated to incorporate multimedia video. This would help researchers to convey complex topics to grant-review panels. If time-poor research panels cannot quickly grasp the scientific ideas presented in a paper application, other factors, such as author affiliations and track records, may disproportionately influence project rankings...
Resumo:
Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.
Resumo:
Cloud computing is a currently developing revolution in information technology that is disturbing the way that individuals and corporate entities operate while enabling new distributed services that have not existed before. At the foundation of cloud computing is the broader concept of converged infrastructure and shared services. Security is often said to be a major concern of users considering migration to cloud computing. This article examines some of these security concerns and surveys recent research efforts in cryptography to provide new technical mechanisms suitable for the new scenarios of cloud computing. We consider techniques such as homomorphic encryption, searchable encryption, proofs of storage, and proofs of location. These techniques allow cloud computing users to benefit from cloud server processing capabilities while keeping their data encrypted; and to check independently the integrity and location of their data. Overall we are interested in how users may be able to maintain and verify their own security without having to rely on the trust of the cloud provider.
Resumo:
Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.
Resumo:
Term-based approaches can extract many features in text documents, but most include noise. Many popular text-mining strategies have been adapted to reduce noisy information from extracted features; however, text-mining techniques suffer from low frequency. The key issue is how to discover relevance features in text documents to fulfil user information needs. To address this issue, we propose a new method to extract specific features from user relevance feedback. The proposed approach includes two stages. The first stage extracts topics (or patterns) from text documents to focus on interesting topics. In the second stage, topics are deployed to lower level terms to address the low-frequency problem and find specific terms. The specific terms are determined based on their appearances in relevance feedback and their distribution in topics or high-level patterns. We test our proposed method with extensive experiments in the Reuters Corpus Volume 1 dataset and TREC topics. Results show that our proposed approach significantly outperforms the state-of-the-art models.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.